首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three acacetin triglycosides (compounds 1, 2 and 3) were isolated from the herbs of Elsholtzia ciliata (Labiatae). The structure were identified as 7-O-β-D-glucopyranosyl-(1 → 2)[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranoside (compound 1), 7-O-(6-O-acetyl)-β-D-glucopyranosyl-(1 → 2)[α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranoside (compound 2) and 7-O-(6-O-acetyl)-β-D-glucopyranosyl-(1 → 2)[(4-O-acetyl)-α-L-rhamnopyranosyl-(1 → 6)]-β-D-glucopyranoside (compound 3) of acacetin. The structures of these compounds were determined on the basis of 2D-NMR spectroscopic data. Compound 3 has not been isolated from a natural source. In addition, the three compounds were quantitatively analysed by HPLC. Acetylcholinesterase (AChE) inhibition activity was assayed to find anti-Alzheimer’s activity, since this enzyme increases the concentration of acetylcholine (ACh), a neurotransmitter, responsible for brain’s memory. Acacetin, the aglycone of the three compounds, exhibited a potent anti-cholinesterase activity (IC50, 50.33 ± 0.87), though its glycosides (1, 2 and 3) were less active. HPLC analysis demonstrated that the three compounds were contained in the MeOH extract in the order of compounds 2 (12.63 mg/g extract) > 3 (3.10 mg/g) > 1 (2.92 mg/g).  相似文献   

2.
Twelve compounds were isolated from Chrozophora tinctoria (L.) Raf. They were identified as kaempferol, kaempferol 3-O-β-glucopyranoside, kaempferol 3-O-(6″-α-rhamnopyranosyl)-β-glucopyranoside, quercetin, quercetin 3-O-β-glucopyranoside, quercetin 3-O-(6″-α-rhamnopyranosyl)-β-glucopyranoside, apigenin, apigenin 7-O-β-glucopyranoside, acacetin, gallic acid, methyl gallate and β-sitosterol-3-O-β-glucopyranoside. Their structures were elucidated by chemical and spectral methods. Furthermore, chemosystematics of the isolated compounds is briefly discussed. It was indicated that C. tinctoria is the only species of Chrozophora that has the capability to synthesis kaempferol aglycone and their glycosides, and the finding is supported by its distinct morphological and anatomical aspects.  相似文献   

3.
Marsilea quadrifolia is an edible aquatic medicinal plant used as a traditional health food in Asia. Four new polyphenols including kaempferol 3-O-(2″-O-E-caffeoyl)-β-d-glucopyranoside (1), kaempferol 3-O-(3″-O-E-caffeoyl)-α-l-arabinopyranoside (3), 4-methy-3′-hydroxypsilotinin (4) and (±)-(E)-4b-methoxy-3b,5b-dihydroxyscirpusin A (18) together with 14 known ones (2, 517) were isolated from the ethanol extract of M. quadrifolia. Structures of the new compounds were elucidated by extensive spectroscopic analyses. In DPPH and oxygen radical absorbance capacity antioxidant assays, some compounds showed stronger antioxidant activities and quercetin (9) was the most potent antioxidant in both assays. In a restraint-induced oxidative stress model in mice, quercetin significantly attenuated the increase in plasma ALT and AST levels as well as liver MDA content of restrained mice. Liver SOD activity was also significantly increased by quercetin, indicating a significant in vivo antioxidant activity. As a rich source of polyphenols with strong antioxidant activities, M. quadrifolia may be developed to a product for relieving oxidative stress.  相似文献   

4.
This is the first study on the phytochemistry and antioxidant activity of Ferula longipes Coss. ex Bonnier and Maury (Apiaceae). A new flavonoid quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-[2-O-caffeoyl]-glucopyranoside (1), along with 10 known compounds kaempferol-3-O-α-L-rhamnopyranoside (2), quercetin-3-O-α-L-rhamnopyranoside (3), kaempferol-3-O-ß-D-glucopyranoside-7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (5), quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (6), isorhamnetin-3,7-di-O-β-D-glucopyranoside (7), apigenin (8), apigenin-7-O-ß-D-glucopyranoside (9), 3,5-dicaffeoylquinic acid (10), deltoin (11) were isolated from the aerial parts of Ferula longipes Coss. Structures elucidation was performed by comprehensive 1D and 2D NMR analyses, mass spectrometry and by comparison with literature data. The compounds 1, 3, 4, 6, 7 and 10 were evaluated for their antioxidant activity, compound 1 exhibited the best antiradical activity potential and showed IC50 and A0.5 values 5.70, 7.25, 5.00, and 2.63 μg/mL towards DPPH free radical-scavenging, ABTS, CUPRAC, and reducing power assays, respectively compared with BHA, BHT and ascorbic acid which were used as positive controls.  相似文献   

5.
A new arbutin derivative, namely dunalianosides J (1), along with six known compounds, arbutin (2), robustaside A (3), 6′-O-caffeoylarbutin (4), dunalianoside D (5), kaempferol 3-O-β-D-glucopyranoside (6) and kaempferol 3-O-β-D-sambubioside (7) were isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae). The structure of 1 was elucidated by extensive 1D and 2D NMR, HR-MS and CD spectroscopic analyses. In which, kaempferol 3-O-β-D-sambubioside (7) was isolated from the genus Vaccinium for the first time.  相似文献   

6.
A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH50 value of 0.33 mM.  相似文献   

7.
A new furostanol saponin, (25R)-26-O-(α-d-glucopyranosyl)-(1→2)-α-l-rhamnopyranosyl-furost-5-ene-3β, 22α, 26-triol-3-O-α-d-glucopyranoside (1), together with four known compounds 2–5 were isolated from the ethanolic extract of the stems of Dendrobium chrysanthum Lindl. The structures of these new compounds were identified by extensive spectroscopic analysis including 1D and 2D NMR and HR-ESI-MS, as well as chemical methods. Compounds 1–3 were isolated from D. chrysanthum for the first time. Furthermore, the inhibitory effects of the compounds on tumor cells were evaluated, and compounds 1–2 exhibited significant cytotoxic activities potentially against SPC-A1, MCF-7 and HeLa human cancer cell lines. Compounds 3–5 showed inhibitory activity against the SPC-A1 and MCF-7.  相似文献   

8.
Three new acyltyramines, N-[2-(4-hydroxyphenyl)ethyl]hentriacontanamide (1), N-[2-(4-hydroxyphenyl)ethyl]nonacosanamide (2) and N-[2-(4-hydroxyphenyl)ethyl]heneicosanamide (3) have been isolated from n-hexane extract of leaves of Anisodus luridus (Solanaceae). Successive extraction of defatted leaves of A. luridus with methanol afforded a residue on removal of solvent under reduced pressure. Residue was partitioned by means of chloroform and n-butanol. Chromatographic resolution of n-BuOH extract afforded six known compounds, apigenin (4), luteolin (5), quercetin (6), quercetin 3-O-α-l-rhamnoside (7), kaempferol 3-O-α-rhamnoside (8) and quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (9). The structures of the isolated compounds were assigned with the help of spectroscopic techniques. This is the first report of isolation of these compounds from this plant.  相似文献   

9.
Abstract

A novel acylated quercetin glycoside, floralpanasenoside A (1) and five known flavonoid glycosides, panasenoside (2), quercetin 3-O-(2''-β-D-glucopyranosyl)-β-D- galactopyranoside (3), trifolin (4) kaempferol 7-O-α-L-rhamnoside (5), and afzelin (6) were isolated from the flower buds of Panax ginseng. Their structures were established by spectroscopic data and comparison with the literature values. Four of the six isolated compounds including 1 (IC50 = 62.4) exhibited α-glucosidase inhibitory activity with IC50 values lower than acarbose (385.2?μM). The molecular docking study indicated that 1 bound to the active site of α-glucosidase with numerous hydrogen bond interactions.  相似文献   

10.
Two new oleanane-type triterpenoid glycosides, 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-22α-angeloyloxyolean-12-ene-15α,16α,28-triol(1) and 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-21β-acetyl-22α-angeloyloxyolean-12-ene-16α,28-diol (2) were isolated from the stems of Camellia oleifera Abel. Their structures were elucidated by means of spectroscopic methods and chemical evidence. The cytotoxic activities of compounds 1–2 were evaluated against five human tumour cell lines (HCT-8, BGC-823, A5049, and A2780). Compounds 1–2 showed cytotoxic activity against five human cancer cell lines, with IC50 values ranging from 3.15 to 7.32 μM.  相似文献   

11.
Two new and one known compounds were isolated from the methanol extract of Sesamum indicum leaves. By means of spectroscopic methods, their structures were elucidated and identified to be 3-epibartogenic acid (1), kaempferol 3-O-[2-O-(trans-p-coumaroyl)-3-O-α-L-rhamnopyranosyl]-β-d-glucopyranoside (2) and epigallocatechin (3). Compound 1 and 3 strongly inhibited α-amylase with the IC50 values of 146.7 and 303.9 μM, respectively, in comparison with acarbose (IC50 124.0 μM).  相似文献   

12.
In the course of phytochemical investigations of Melia azedarach leaves, a novel cinnamoyl glycoside, cinnamoyl-1-α-L-rhamnoside (1), and a novel acylated quercetin triglycoside, quercetin-3-O-[rhamnosyl 1→6(4″-lactoyl glucoside)]-4′-O-glucoside (2), have been isolated and characterized on the basis of spectroscopic methods, together with the six known flavonoid compounds kaempferol-3-O-rutinoside, 3-O-rhamnoside, quercetin-3-O-rutinoside, 3-O-rhamnoside, and the aglycones quercetin and kaempferol. All isolated compounds have been evaluated for their structures by chromatographic methods, chemical degradation, and UV and NMR spectroscopy. The antioxidant activity of the extract was studied as well. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 12–14, January–February, 2008.  相似文献   

13.
A chemical investigation on the H2O-soluble constituents from the leaf of Phoebe formosana. led to the characterization often compounds including two C-glycosylflavone — vitexin ( 1 ), isovitexin ( 2 ); six O-glycosylflavonol — quercetin 3-O-galactoside ( 3 ), quercetin 3-O-α-L-arabinopyranoside ( 4 ), kaempferol 3-O-α-L-arabinofuranoside ( 5 ), kaempferol 3-O-α-L-rhamnoside ( 6 ), kaempferol 3-O-β-D-xylopyranoside ( 7 ); one dihydroflavonol -(+)-dihydroquercetin ( 8 ) and two nucleosides -adenosine ( 9 ), and adenine ( 10 ). Their structures were determined on the basis of spectral analysis.  相似文献   

14.
As a continuation of investigating Impatiens L. genus, eight flavonoids, eriodyctiol, eriodyctiol 7-O-β-?-glucoside, kaempferol 3-O-β-?-glucoside, kaempferol 3-O-β-?-galactoside, kaempferol 3-rhamnosyl-di-glucoside, kaempferol 3-O-β-?-rutinoside, quercetin 3-O-β-?-glucoside and quercetin 3-O-β-?-galactoside, two phenolic acids – p-hydroxybenzoic acid and protocatechuic acid, and 2-methoxynaphthalene-1,4-dione were isolated from the aerial parts of I. glandulifera collected in Poland. The structures of the compounds were established by analysis of their spectroscopic (1H and 13C NMR) and spectrometric (MS) data, as well as by comparison of these with those reported in the literature. Quercetin 3-O-β-?-glucoside, kaempferol 3-O-β-?-galactoside and kaempferol 3-O-β-?-rutinoside were isolated for the first time from the investigated taxon. In addition, the antioxidant activities in different tests of all obtained compounds were evaluated. The results clearly showed that among analyzed constituents, quercetin 3-O-β-?-glucoside exhibited antioxidant activity comparable or better than ascorbic acid and Trolox which were used as a positive control.  相似文献   

15.
Abstract

Three novel dammarane-type saponins, 2α,3β,12β,20(S),24(S)-pentahydroxydammar-25-ene-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-20-O-β-D-glucopyranoside (1, namely gypenoside J1), 2α,3β,12β,20(S),25-pentahydroxydammar-23-ene-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-20-O-β-D-glucopyranoside (2, namely gypenoside J2) and 2α,3β,12β,20(S)-tetrahydroxydammar-25-en-24-one-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-20-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (3, namely gypenoside J3) along with one known gypenoside (gypenoside LVII) were isolated from the aerial parts of G. pentaphyllum using various chromatographic methods. Their structures were elucidated on the basis of IR, 1D- (1H and 13C), 2D-NMR spectroscopy (HSQC, HMBC and COSY), and mass spectrometry (ESI-MS/MS). Their activity was tested using CCK-8 assay. These four compounds showed little anti-cancer activity with IC50 values more than 100?μM against four types of human cancer lines. The effects of them against H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells were evaluated and they all showed potential neuroprotective effects with 3.64–18.16% higher cell viability than the H2O2-induced model group.  相似文献   

16.
The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3’,4,5’-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4’’-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3’’-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1–9 showed good dual inhibition on both the enzymes while compounds 10–16 did not reasonably contribute to both the cholinesterases inhibitory effects.  相似文献   

17.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

18.
Isolation of flavonoids from the aerial parts of Taverniera aegyptiaca Bioss. (Fabaceae) led to identification of one new flavonol glycoside, isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (1), along with eleven compounds, which previously have not been isolated from this plant quercetin-3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (2), isorhamnetin-3-O-α-l-arabinopyranoside (3), quercetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (4), isorhamnetin-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (7), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (8), isorhamnetin 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside] (9), kaempferol 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside] (10), isorhamnetin (11), 4,4′-dihydroxy-2′-methoxychalcone (12), formononetin (13) and calycosin (15)] and some compounds already known from this plant [quercetin-3-O-robinobioside (5), isorhamnetin-3-O-robinobioside (6), afrormosin (14) and odoratin (16)].  相似文献   

19.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

20.
Two new alkyl glycosides, heptyl vicianoside (1) and methyl 2-O-β-d-fucopyranosyl-α-l-arabinofuranoside (methyl caramboside, 4), were isolated from the sour fruit of Averrhoa carambola L. (Oxalidaceae), along with octyl vicianoside (2), cis-3-hexenyl rutinoside (3), and methyl α-d-fructofuranoside (5). Their structures were determined by spectroscopic and chemical methods. Compounds 2, 3, and 5 were obtained from the genus Averrhoa for the first time. All the compounds were evaluated for in vitro α-glucosidase, pancreatic lipase, and acetylcholinesterase inhibitory activities, but none of them were potent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号