首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study, anti-Candida activity and phenol contents of Lythrum salicaria L. calli and wild species have been evaluated. The seeds of L. salicaria (Lythraceae), collected from Lahidjan City in the north of Iran, were cultured in Murashige and Skoog medium (MSM) with a supplement, gibberellin, to germinate. Callus inductions were performed from segments of seedling on MSM containing different concentrations of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). The activity of calluses extracts, wild plant, gallic acid, and 3,3′,4′-tri-O-methylellagic acid-4-O-β-d-glucopyranoside (TMEG) as the main phenolic compounds against Candida albicans was assessed using cup plate diffusion method. The total phenols contents of calli and wild plant extracts were analyzed using Folin–Ciocalteu reagent. The callus formation in MSM supplemented with various concentrations of 2,4-D and BAP were 0–100 %. Anti-Candida activity of callus extract which obtained from MSM supplemented with 2,4-D and BAP (1 mg?dm?3) was similar to the wild plant extract. Minimum inhibitory concentration values of gallic acid and TMEG were obtained as 0.312 and 2.5 mg?cm?3, respectively. Gallic acid equivalent values in all treatments were from 0 to 288 μg GAE mg?1. Phenolic contents of plant aerial parts (331?±?3.7 μg GAE mg?1) and the callus, which developed in MSM including 1 mg?dm?3 of both 2,4-D and BAP, showed the same phenolic value and exhibited anti-Candida extract activity.  相似文献   

2.
The mucilage in Lepidium sativum L. is considered a biologically active compound with diverse medicinal properties. Different explants (hypocotyls and leaf) were transferred to Murashige and Skoog (MS) medium supplemented with twelve different plant growth regulator combinations under two different incubations (light and dark). The best mucilage production from callus (36.76% g g?1 dry weight) was obtained in the MS medium supplemented with 1 mg L?1 of 2, 4-D and 2 mg L?1 of BAP under the light condition. The mucilage produced by callus culture was nearly three times more than the mucilage yield of the seeds. The glucose, arabinose + mannose and galactose were 43.4 (mg g?1 DW), 195.3 (mg g?1 DW) and 86.2 (mg g?1 DW) in the mucilage originated from seed, callus leaf and callus hypocotyl, respectively. The present study proposes an efficient method for producing large scales of mucilage with a favorable sugar aimed at food or pharmaceutical industries.  相似文献   

3.
Nerium odorum, Linn. (Apocynaceae) is an important evergreen shrub. It is heat, salinity and drought tolerant. Plants with milky sap have medicinal value, mainly cardenolides, flavonoids and terpenes. It is used for wastewater purification and for restoration of riparian woodlands. In view of these facts, the study was conducted for micropropagation of N. odorum. Murashige and Skoog (MS) media supplemented with different concentrations (0.5–10.0 mg/l) of 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and kinetin (Kin) were used singly and in combinations. Among all the growth hormones, 2,4-D was the best for callus induction (75 % in stem and 79 % in leaf) and in combination 2,4-D and BAP (78 % in stem and 81 % in leaf). The day of callus induction started from the 19th to the 37th day. This variation is due to the differences in culture conditions and the age of explants. The fresh and dry weight and moisture content showed good growth of callus, which is used in further studies of alkaloid production. Micropropagation of this plant allows the production of clones at a fast rate and in continuous manner. This work can lead to the development of an efficient protocol for callus induction and other issues.  相似文献   

4.
A reliable in vitro regeneration system for the economical and medicinally important Piper nigrum L. has been established. Callus and shoot regeneration was encouraged from leaf portions on Murashige and Skoog (MS) medium augmented with varied concentrations of plant growth regulators. A higher callus production (90 %) was observed in explants incubated on MS medium incorporated with 1.0 mg?L?1 6-benzyladenine (BA) along with 0.5 mg?L?1 gibberellic acid after 4 weeks of culture. Moreover, a callogenic response of 85 % was also recorded for 1.0 mg?L?1 BA in combination with 0.25 mg?L?1 α-naphthalene acetic acid (NAA) and 0.25 mg?L?1 2,4-dichlorophenoxyacetic acid or 0.5 mg?L?1 indole butyric acid (IBA) along with 0.25 mg?L?1 NAA and indole acetic acid. Subsequent sub-culturing of callus after 4 weeks of culture onto MS medium supplemented with 1.5 mg?L?1 thiodiazoran or 1.5 mg?L?1 IBA induced 100 % shoot response. Rooted plantlets were achieved on medium containing varied concentrations of auxins. The antioxidative enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] revealed that significantly higher SOD was observed in regenerated plantlets than in other tissues. However, POD, CAT, and APX were higher in callus than in other tissues. A high-performance liquid chromatography (HPLC) fingerprint analysis protocol was established for quality control in different in vitro-regenerated tissues of P. nigrum L. During analysis, most of the common peaks represent the active principle “piperine.” The chemical contents, especially piperine, showed variation from callus culture to whole plantlet regeneration. Based on the deviation in chromatographic peaks, the in vitro-regenerated plantlets exhibit a nearly similar piperine profile to acclimated plantlets. The in vitro regeneration system and HPLC fingerprint analysis established here brought a novel approach to the quality control of in vitro plantlets, producing metabolites of interest with substantial applications for the conservation of germplasm.  相似文献   

5.
This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.  相似文献   

6.
Tissue cultures were established from cotyledon and cotyledonarynode segments ofArachis hypogaea L. on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins (IAA, NAA, IBA, and 2, 4-D) and cytokinins (KIN and BAP). For callus initiation, high concentration of auxins and low concentration of cytokinins were used, whereas high concentration of cytokinins and low concentration of auxins were used for shoot-bud differentiation. Callus induction and shoot-bud regeneration frequency, however, varied with genotype, expiant, and the different plant-growth regulators combination in the medium. The shoot-bud multiplication was also influenced by genotype, explant type, and growth regulators. The combination of BAP and NAA produced more shoots than other combinations. The maximum number of shoots was obtained from cotyledonary-node segments on a medium containing BAP (5.0 mg/L) and IBA (1.0 mg/L). Rooting of regenerated shoots was achieved on a medium augmented with NAA or IBA (2.0 mg/L) in combination with KIN (0.5 mg/L). Rooted plantlets were successfully established in the soil, where 95% of them survived. Tissue-culture studies of these expiants suggests the shoots to be ofde nova origin, which would make the system suitable for gene-transfer technology.  相似文献   

7.
Tasiu Isah 《Chemical Papers》2017,71(6):1091-1106
The biotechnological approach of in vitro cultures elicitation offers an alternative strategy for the production of camptothecin (CPT) in Nothapodytes nimmoniana to mitigate indiscriminate harvest of the endangered natural population for the alkaloid. Yeast extract (YE) and vanadyl sulfate (VS) elicitors were used to enhance the biosynthesis of CPT in hypocotyl-derived callus cultures of N. nimmoniana by cultivation using solid and liquid Murashige and Skoog (MS) medium amended with NAA + BAP (2.0 + 1.0 mg L?1). Effects of the two elicitors on biomass and CPT production at 6.25, 12.5, 25, 50 and 75 mg L?1 concentrations using callus cultures from three cell lines were evaluated after 15, 30 and 45 days culture. Yeast extract elicitor treatments showed a linear enhancement effect on biomass and CPT production up to 50 mg L?1 YE and beyond the concentrations, no significant effect was observed. Enhanced biomass and CPT production were achieved with VS elicitor up to 25 mg L?1 concentrations but, 50 and 75 mg L?1 VS had minimal effects on biomass and CPT production in callus sources and incubation duration-dependent manner. The intracellular yield of CPT in liquid media-cultivated cultures at concentrations of the two elicitors was lower when compared to solid media treatments relative control due to the extracellular accumulation but, higher overall production. Accumulation of the biomass showed association with produced CPT in the elicitor treatments and control cultures.  相似文献   

8.
Two-dimensional electrophoresis of Cereus peruvianus callus tissues grown in culture media containing two different 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin combinations was used to identify minor differences in polypeptide composition of these cell clones. Altered expression during growth in the two 2,4-D and kinetin combinations was apparent for 13 polypeptides when calluses in the two media were compared. The number of proteins with differential expression (presence or absence of specific spots) was higher in callus tissues cultured in the 4.0 mg/L 2,4-D and 8.0 mg/L kinetin combination than in callus tissues cultured in the 4.0 mg/L 2,4-D and 4.0 mg/L kinetin combination. The present results show that the callus tissues maintained at 4.0 mg/L 2,4-D and 8.0 mg/L kinetin can be used as a matrix for in vitro selection programs.  相似文献   

9.
Pasak bumi (Eurycoma longifolia Jack.) has been known as a plants that can produce secondary metabolites for medicinal purposes such as: aphrosidiac, antimalaria, dysentri, antitumor, etc. Poor seed germination of pasak bumi will affect the avaibility of plant material for drug extraction. Over exploitation of this plant will also reduce plant population in its natural habitat. In vitro culture, i.e. through somatic embryogenesis, therefore, can be used as one of an alternative method for plant regeneration as well as for in vitro metabolite production. Based on this reason, the research has been done with an objective to analyze the presence of secondary metabolite in somatic embryo of pasak bumi. Seed-derived callus was used as an explant. This callus was maintained to proliferate in MS (Murashige&Skoog, 1962) medium supplemented with 2.25 mg/L 2,4-D and 2.0 mg/L kinetin. A half gram of callus from proliferation medium was transferred into the MS liquid medium containing 1.0 or 2.25 mg/L 2,4-D, and 2.0 mg/L BAP or 2.0 mg/L kinetin. Histochemical examination using Jeffrey's reagen and neutral red showed that alkaloid and terpenoid substances were presence in somatic embryo of pasakbumi. In accordance with histochemical test, GC-MS analyses showed that secondary metabolites was also synthesized by non embryogenic callus and the mixture ofembryogenic callus and somatic embryo, although the concentration in the mixture of embryogenic callus and somatic embryo was lower than those in non-embryogenic callus. Secondary metabolites, including 3-[(cyclohexyl-methyl-amino)-methyl]-3H-benzooxazole-2-one (0.06%) and 2-furancarboxaldehyde, 5-(hydroxymethyl) (43.024%) were found in embryogenic callus and somatic embryo. In addition, the mixture of embryogenic callus and somatic embryo also synthesized fatty acid and lipids (52.751%) which was higher than non-embryogenic callus (24.789%). Based on the result, the mixture of embryogenic callus and somatic embryo could produce secondary metabolites, such as alkaloid, terpenoid subtances, and phenol. The concentration of metabolites in the mixture of embryogenic callus and somatic embryo, however, was lower compare to non-embryogenic callus.  相似文献   

10.
This study was conducted to analyse the free radical scavenging potential of callus obtained from nodal segments and leaf explants of Artemisia amygdalina Decne. The explants were inoculated on MS medium augmented with various concentrations of BAP, Kn, NAA and 2,4-D for callus induction. In this study, 12.42?g of callus developed from the leaf explant on MS (NAA 10?+?BAP 7.5?μM) and 8.81?g of callus developed from nodal explant on NAA 2?μM+BAP 2?μM. Callus raised from both explants on all treatments seemed non-regenerative but BAP 2?μM produced 7.33 shoots and BAP 15?μM produced callus and 5 shoots per nodal segment. Callus was analysed for antioxidant activity via DPPH, riboflavin photoxidation and DNA damage assays. Methanol and aqueous extracts show more scavenging in DPPH, deoxyribose assay and in contrast, petroleum ether and ethyl acetate extracts show higher activity in riboflavin photoxidation assay. Tocopherol, ascorbic acid and BHT were used as controls.  相似文献   

11.
Aloe vera L., a member of Liliaceae, is a medicinal plant and has a number of curative properties. We describe here the development of tissue culture method for high-frequency plantlet regeneration from inflorescence axis-derived callus cultures of sweet aloe genotype. Competent callus cultures were established on 0.8% agar-gelled Murashige and Skoog’s (MS) basal medium supplemented with 6.0 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 100.0 mg l−1 of activated charcoal and additives (100 mg l−1 of ascorbic acid, 50.0 mg l−1 each of citric acid and polyvinylpyrrolidone, and 25.0 mg l−1 each of l-arginine and adenine sulfate). The callus cultures were cultured on MS medium containing 1.5 mg l−1 of 2,4-D, 0.25 mg l−1 of Kinetin (Kin), and additives with 4% carbohydrate source for multiplication and long-term maintenance of regenerative callus cultures. Callus cultures organized, differentiated, and produced globular embryogenic structures on MS medium with 1.0 mg l−1 of 2,4-D, 0.25 mg l−1 of Kin, and additives (50.0 mg l−1 of ascorbic acid and 25.0 mg l−1 each of citric acid, l-arginine, and adenine sulfate). These globular structures subsequently produced shoot buds and then complete plantlets on MS medium containing 1.0 mg l−1 of 6-benzylaminopurine and additives. A hundred percent regenerated plantlets were hardened in the greenhouse and stored under an agro-net house/nursery. The regeneration system defined could be a useful tool not only for mass-scale propagation of selected genotype of A. vera, but also for genetic improvement of plant species through genetic transformation.  相似文献   

12.
Kaempferia galanga is an important medicinal plant that is facing threat of extinction owing to indiscriminate and unsustainable harvesting in the wild. Conventional breeding is difficult in this plant, and in vitro multiplication is important to conservation and propagation. Leaf and rhizome explants of Kaempferia were aseptically cultured on MS medium with various combinations of indole-3-acetic acid (IAA), benzyl amino purine (BAP), napthalene acetic acid (NAA), 2-4-dichlorophenoxy acetic acid (2,4-D) and kinetin at concentrations ranging from 0.5 to 2.5 mg/L. High-frequency organogenesis and multiple shoot regeneration was induced from rhizome explants on MS medium supplemented with 0.5 mg/L of IAA and 2.5 mg/L of BAP. Rooting was induced in MS medium with 0.5 mg/L of IAA and 2 mg/L of BAP.  相似文献   

13.
Adventitious root cultures derived from leaf derived callus of Withania somnifera (L.) Dunal were treated with methyl jasmonate and salicylic acid independently. Biomass accumulation, culture age, elicitation period, and culture duration were optimized for higher withanolides production in the two best-responding varieties collected from Kolli hills (Eastern Ghats) and Cumbum (Western Ghats) of Tamil Nadu, India. Between the two elicitors, salicylic acid (SA) improved the production of major withanolides (withanolide A, withanolide B, withaferin A, and withanone) as well as minor constituents (12-deoxy withastramonolide, withanoside V, and withanoside IV) in the Kolli hills variety. Treatment of root biomass (11.70?g FW) on 30-day-old adventitious root cultures with 150???M SA for 4?h elicitor exposure period resulted in the production of 64.65?mg?g?l dry weight (DW) withanolide A (48-fold), 33.74?mg?g?l DW withanolide B (29-fold), 17.47?mg?g?l DW withaferin A (20-fold), 42.88?mg?g?l DW withanone (37-fold), 5.34?mg?g?l DW 12-deoxy withastramonolide (nine fold), 7.23?mg?g?l DW withanoside V (seven fold), and 9.45?mg?g?l DW withanoside IV (nine fold) after 10?days of elicitation (40th day of culture) when compared to untreated cultures. This is the first report on the use of elicitation strategy on the significant improvement in withanolides production in the adventitious root cultures of W. somnifera.  相似文献   

14.
Protocols for regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata were developed. Initially, seeds of four genotypes of E. binata were incubated on a callus induction Murashige and Skoog (MS) basal medium supplemented with three concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). It was found that 36.2 % of explants developed highly friable callus on medium containing 3.0 mg l?1 2,4-D. Based on frequency of callus induction, the genotype Neixiang was selected for regeneration and transformation. Callus incubated on MS basal medium supplemented with 0.2 mg l?1 α-naphthalene acetic acid and 6.0 mg l?1 6-furfuryl-aminopurine developed shoots. Subsequently, Agrobacterium tumefaciens strain EHA105—harboring a plasmid pCAMBIA1381 carrying a hygromycin phosphotransferase (hpt) resistance gene and a synthetic green fluorescent protein (GFP) gene, both driven by the cauliflower mosaic virus 35S promoter—was used for transformation system. Putative transgenic callus was obtained following two cycles of hygromycin selection. Expression of the transgene(s) in putative transgenic callus was analyzed using the GFP detection. Molecular identification of putative transformed shoots was performed by polymerase chain reaction and Southern blot analysis to confirm presence and integration of the hpt gene.  相似文献   

15.
In this study, an efficient procedure was developed for callus induction and regeneration of kiwifruit (Actinidia deliciosa) using different organs of shoots developed under in vitro conditions. Effects of explants source and media (M1, 1.0 mg l−1 BA + 2.0 mg l−1 2,4-D–M2, 1.0 mg l−1 NAA + 2.0 mg l−1 2,4-D) on initiation of callus were examined in order to obtain callus for organogenesis. The best callus for plant regeneration was obtained from leaf explants on Murashige and Skoog’s medium (MS) supplemented with M2. Formation of callus from leaf of kiwifruit (A. deliciosa) was cultured in MS medium containing different concentration of N6-benzylaminopurin (BA; 0.0, 1.0, 2.0, 4.0, 6.0, 8.0 mg l−1) for callus proliferation and plant regeneration. Although the first shoot formation was appeared in medium containing 6.0 and 8.0 mg l−1 BA, the best shoots formation was obtained in medium with 4.0 mg l−1 BA.  相似文献   

16.
An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg?l?1) in combination with 6-benzylaminopurine (BA; 0.8 mg?l?1). For callus regeneration, various concentrations of BA (1.0–5.0 mg?l?1) or thidiazuron (TDZ; 1.0–5.0 mg?l?1) alone or in combination with indole-3-acetic acid (IAA; 0.2–1.0 mg?l?1) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg?l?1) and IAA (0.5 mg?l?1) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant.  相似文献   

17.
It is known that the compound 2,4-dichloro-6-nitrophenol (2,4DC6NP) is formed upon nitration of 2,4-dichlorophenol, which in turn is a transformation intermediate of the herbicide dichlorprop. However, the chemical and spectroscopic characteristics of 2,4DC6NP, as well as its toxicity, are poorly known. This work shows that 2,4DC6NP behaves as a diprotic acid in aqueous solutions, with pKa values of 3.0?±?0.9 and 4.9?±?0.5. At pH?<?3, 2,4DC6NP would undergo protonation. The absorption spectra suggest that anionic 2,4DC6NP, which prevails at pH?>?5 would have an ortho-quinoid structure that is responsible for the absorption peak centred at 428?nm. Considering that 2,4DC6NP has been detected in the brackish lagoons of the Rhône delta (southern France), where its levels are comparable to those of the parent herbicide, it is necessary to examine the possible effects of 2,4DC6NP on the species living in that environment. For this reason, the acute toxicity of the anionic form of 2,4DC6NP was assessed for the brine shrimp Artemia salina, a zooplankton species that lives both in brackish and in saline aquatic environments. The toxicity test yielded a LC20 value of 8?±?2?mg?L?1 and a LC50 value of 18.7?±?0.8?mg?L?1. Such values are safely higher than the maximum detected concentration of 2,4DC6NP in the Rhône delta lagoons. Further studies should be concentrated on the long-term effects of 2,4DC6NP, and in particular on its potential genotoxicity.  相似文献   

18.
Alpinia galanga is a rhizomatous herb rich in essential oils and various other significant phytoconstituents. Rapid direct regeneration was obtained from the rhizome explants (15.66 ± 0.57 shoots) on MS media supplemented with zeatin at a concentration of 2 mg/l. The callus cultures of A. galanga were initiated from the rhizome explants on MS media supplemented with 2 mg/l each of BAP, 2,4-D, and NAA. The callus was analyzed for the presence of a vital phytoconstituent--acetoxychavicol acetate (ACA) associated with various biological properties. ACA was detected in the young friable callus as well as the stationary phase callus. Moreover, the induction of morphogenetic response in callus resulted in higher accumulation of ACA. The phytohormone withdrawal from the propagation media and the subsequent transfer of callus to BAP (2 mg/l) containing MS media has resulted in multiple shoot induction. The regenerated (indirect) plants have shown 1.6-fold higher ACA content (1.253%) when compared to the control plant (0.783%). Micropropagation of such conventionally propagated plants is very essential to meet the commercial demand as well as to ensure easy storage and transportation of disease free stocks.  相似文献   

19.
Here, we demonstrate the micropropagation protocol of Argyrolobium roseum (Camb.), an endangered herb exhibiting anti-diabetic and immune-suppressant properties, and antioxidant enzymes pattern is evaluated. Maximum callogenic response (60 %) was observed from leaf explant at 1.0 mg L?1 1-nephthalene acetic acid (NAA) and 0.5 mg L?1 6-benzyl aminopurine (BA) in Murashige and Skoog (MS) medium using hypocotyl and root explants (48 % each). Addition of AgNO3 and PVP in the culture medium led to an increase in callogenic response up to 86 % from leaf explant and 72 % from hypocotyl and root explants. The best shooting response was observed in the presence of NAA, while maximum shoot length and number of shoots were achieved based on BA-supplemented MS medium. The regenerated shoots were rooted and successfully acclimatized under greenhouse conditions. Catalase and peroxidase enzymes showed ascending pattern during in vitro plant development from seed while ascorbate peroxidase showed descending pattern. Totally reverse response of these enzymes was observed during callus induction from three different explants. During shoot induction, catalase and peroxidase increased at high rate while there was a mild reduction in ascorbate peroxidase activity. Catalase and peroxidase continuously increased; on the other hand, ascorbate peroxidase activity decreased during root development and acclimatization states. The protocol described here can be employed for the mass propagation and genetic transformation of this rare herb. This study also highlights the importance and role of ascorbate peroxidase, catalase, and peroxidase in the establishment of A. roseum in vitro culture through callogenesis and organogenesis.  相似文献   

20.
An efficient in vitro propagation method has been developed for the first time for Musa acuminata (AAA) cv. Vaibalhla, an economically important banana cultivar of Mizoram, India. Immature male flowers were used as explants. Murashige and Skoog’s (MS) medium supplemented with plant growth regulators (PGRs) were used for the regeneration process. Out of different PGR combinations, MS medium supplemented with 2 mg L?1 6-benzylaminopurine (BAP) + 0.5 mg L?1 α-naphthalene acetic acid (NAA) was optimal for production of white bud-like structures (WBLS). On this medium, explants produced the highest number of buds per explant (4.30). The highest percentage (77.77) and number (3.51) of shoot formation from each explants was observed in MS medium supplemented with 2 mg L?1 kinetin + 0.5 mg L?1 NAA. While MS medium supplemented with a combination of 2 mg L?1 BAP + 0.5 mg L?1 NAA showed the maximum shoot length (14.44 cm). Rooting efficiency of the shoots was highest in the MS basal medium without any PGRs. The plantlets were hardened successfully in the greenhouse with 96 % survival rate. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic stability of in vitro regenerated plantlets of M. acuminata (AAA) cv. Vaibalhla. Eight RAPD and 8 ISSR primers were successfully used for the analysis from the 40 RAPD and 30 ISSR primers screened initially. The amplified products were monomorphic across all the regenerated plants and were similar to the mother plant. The present standardised protocol will find application in mass production, conservation and genetic transformation studies of this commercially important banana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号