首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of 2,6-bis(bromomethyl)pyridine with 3,5-dimethylpyrazole and 1H-indazole yield the terdentate ligands 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (5) and 2,6-bis(indazol-2-ylmethyl)pyridine (6). The molecular structure of the new compound 6 was determined by single-crystal X-ray diffraction. These ligands react with the CrCl3(THF)3 complex in THF to form neutral complexes of general formula [CrCl3{2,6-bis(azolylmethyl)pyridine-N,N,N}] (7, 8) which are isolated in high yields as stable green solids and characterized by means of elemental analysis, magnetic moments, IR, and mass spectroscopy. Theoretical calculations predict that the thermodynamically preferred structure of the complexes is the fac configuration. After reaction with methylaluminoxane (MAO) the chromium(III) complexes are active in the polymerization of ethylene.  相似文献   

2.
Aldimine 2,6-bis[(imino)methyl]pyridine iron(II) (1, 4, and 6) and cobalt(II) (3 and 5) complexes bearing bulky cycloaliphatic (bornyl and myrtanyl) or aromatic (naphthyl) terminal groups have been applied successfully, after activation with methyl aluminoxane (MAO), as catalysts for the polymerization of tert-butylacrylate. For comparison reasons, complex 2 that contains the ketimine ligand, 2,6-bis[(−)-cis-myrtanylimino)ethyl]pyridine (BMEP), has also been utilized. All studied complexes showed moderate polymerization activities, and they produced high molar mass syndiorich-atactic polymers. Surprisingly, the aldimine-based catalyst systems showed comparable activities compared with the corresponding ketimine complex (2), and they produced high molar mass polymers. In addition, complexes with bulky terminal cycloaliphatic substituents on the tridentate aldimine ligands showed higher polymerization activity compared with the aromatic ones (6). Polymerization activity and polymer molar masses are dependent on the ligand framework.  相似文献   

3.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   

4.
Low‐coordinate organoCr(III) complexes supported by the silylamido ligand –N(SiMe3)DIPP (DIPP = 2,6‐diisopropylphenyl) are ethylene polymerization catalyst precursors without the need of additional cocatalyst. The reaction of CrCl3(THF)3 with 3 or 2 equiv. of LiN(SiMe3)DIPP yields either a four‐membered cyclometalated Cr complex or Cr[N(SiMe3)DIPP]2Cl, respectively, with no trace of Cr[N(SiMe3)DIPP]3. Addition of 1 equiv. of LiN(SiMe3)DIPP to Cr[N(SiMe3)DIPP]2Cl also leads to the four‐membered metallacycle, which upon heating transforms to a new six‐membered Cr metallacycle, likely via a σ‐bond metathesis step. Cr[N(SiMe3)DIPP]2Cl can be readily converted to bis(amido)Cr(III) vinyl and alkyl complexes Cr[N(SiMe3)DIPP]2R (R = vinyl, Bn, and Me). All of these structurally characterized low‐coordinate Cr(III) complexes with a Cr–C bond initiate the polymerization of ethylene in the absence of activators or cocatalysts, producing ultra‐high‐molecular weight polyethylene.  相似文献   

5.
The solution chemistry of Cu(II) with a series of five planar tridentate nitrogen ligands, 2,6-bis(benzimidazol-2-yl)pyridine (bzimpy, 1 ), 2,6-bis(l-methylbenzimidazol-2-yl)pyridine (mbzimpy, 2 ) 2,6-bis(benzothiazol-2-yl) pyridine (bzthpy, 3 ), 2,6-bis(benzoxazol-2-yl)pyridine (bzoxpy, 4 ), and 2,2′, 6′, 2″-terpyridyl (terpy, 5 ) is reported. Electronic and EPR spectra are consistent with the complexes [CuL]2+ having essentially tetragonal structure in solution, with the fourth coordination site in the plane of the ligand occupied by solvent. bzthpy and bzoxpy show smaller ligand-field splittings than bzimpy, mbzimpy, and terpy, and are easily decomplexed from the copper. Substitution of the coordinated solvent molecule in the plane of the ligand is observed with Cl? and OH? (provided that the ligand has no acidic protons) for all ligands except terpy. The reaction between [Cu(mbzimpy)]2+ and imidazole has been studied by potentiometric titration in MeCN/H2O 1:1 and shows strong binding of the imidazole in the plane (log K = 4.5 at 25°), and also the formation of an imidazolate-bridged dinuclear species.  相似文献   

6.
The five unsymmetrical 2-[1-(2,4-dibenzhydryl-6-chlorophenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine compounds (aryl: 2,6-Me2Ph L1 , 2,6-Et2Ph L2 , 2,6-iPr2Ph L3 , 2,4,6-Me3Ph L4 and 2,6-Et2–4-MePh L5 ) were prepared and characterized with FT-IR and 1H/13C NMR spectroscopy as well as elemental analysis. The treatment of L1 – L5 with CrCl3·3THF affords the corresponding chromium chloride complexes ( Cr1 – Cr5 ) in excellent yields. The molecular structures of Cr2 and Cr3 characterized by X-ray diffraction show a distorted octahedral geometry with three nitrogen atoms and three chlorine atoms around the metal center. On activation with either MAO or MMAO, Cr1 – Cr5 collectively display high activity (up to 14.96 × 106 g (PE) mol−1 (Cr) h−1 at 60 °C) affording highly linear polyethylene with low molecular weight distribution (Mw/Mn) ranging from 1.06 to 2.81. An in-depth catalytic evaluation of Cr1 was conducted in order to investigate how the cocatalyst type and its amount, reaction temperature and polymerization time affect the catalytic activities and polymer properties.  相似文献   

7.
Reactions of 2,6-bis(3-aminopropylaminocarbonyl)pyridine (1) with 4-tert-butyl-2,6-diformylphenol and 2,5-diformylpyrrole in the presence of Ba(ClO4)2 in EtOH afford barium complexes with asymmetric macrocyclic Schiff bases as soft and hard ligands. The reaction of compound 1 with Cu(OCOCMe3)2 involves closure of a tetrahydropyrimidine ring to give a mononuclear complex, which was structurally characterized by X-ray diffraction analysis.  相似文献   

8.
Two new Ni(II) complexes of 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine (L1), 2,6-bis[1-(4-methylphenylimino)ethyl]pyridine (L2 ) have been synthesized and structurally characterized. Complex Ni(L1)Cl2?·?CH3CN (1), exhibits a distorted trigonal bipyramidal geometry, whereas complex Ni(L1)(CH3CN)Cl2 (2), is six-coordinate with a geometry that can best be described as distorted octahedral. The catalytic activities of complexes 1, 2, Ni{2,6-bis[1-(2,6-diisopropyl-phenylimino)ethyl]pyridine} Cl2?·?CH3CN (3), and Ni{2,6-bis[1-(2,6-dimethylphenylimino) ethyl]pyridine}Cl2?·?CH3CN (4), for ethylene polymerization were studied under activation with MAO.  相似文献   

9.
By dealing CrCl3∙3THF with the corresponding ligands (L1–L5), an array of fluoro-substituted chromium (III) chlorides (Cr1–Cr5) bearing 2-[1-(2,4-dibenzhydryl-6-fluoro- phenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine (aryl = 2,6-Me2Ph Cr1, 2,6-Et2Ph Cr2, 2,6-iPr2Ph Cr3, 2,4,6-Me3Ph Cr4, 2,6-Et2-4-MePh Cr5) was synthesized in good yield and validated via Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis. Besides the routine characterizations, the single-crystal X-ray diffraction study revealed the solid-state structures of complexes Cr2 and Cr4 as the distorted-octahedral geometry around the chromium center. Activated by either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the chromium catalysts exhibited high activities toward ethylene polymerization with the MMAO-promoted polymerizations far more productive than with MAO (20.14 × 106 g (PE) mol−1 (Cr) h−1 vs. 10.03 × 106 g (PE) mol−1 (Cr) h−1). In both cases, the resultant polyethylenes were found as highly linear polyethylene waxes with low molecular weights around 1–2 kg mol−1 and narrow molecular weight distribution (MWD range: 1.68–2.25). In general, both the catalytic performance of the ortho-fluorinated chromium complexes and polymer properties have been the subject of a detailed investigation and proved to be highly dependent on the polymerization reaction parameters (including cocatalyst type and amount, reaction temperature, ethylene pressure and run time).  相似文献   

10.

The hexadentate N2S2O2 donor ligand N,N’-bis(3,5-tert-butylsalicylidene) diphenyl disulfide-2,2’-diamine was synthesised by the condensation of 2-aminophenyl disulfide and 3,5-di-tert-butyl-2-hydroxybenzaldehyde and its molecular structure was confirmed by X-ray studies. One of the tert-butyl groups in the Schiff base has rotational disorder around the C–C bond with ratio 0.56:0.44. The palladium complexes were prepared by the direct reaction of PdCl2(CH3CN)2 and Schiff base ligands N,N’-bis (5-tert-butylsalicylidene) diphenyl disulfide-2,2’-diamine and N,N’-bis(3,5-tert-butylsalicylidene) diphenyl disulfide-2,2’-diamine, respectively. The structure of the metal complexes was characterized by physico-chemical and spectroscopic methods. Palladium is in square-planar geometry bonded to imine nitrogen and phenolic O in both the complexes. The catalytic efficiency of the palladium complexes was evaluated in the cross-coupling reactions; Heck-Mizoroki reaction of iodobenzene and methyl acrylate and the Suzuki-Miyaura reaction of phenylboronic acid and iodobenzene, which gave low to moderate yields. Higher conversions were obtained for 2a as catalyst due to the increase in the number of bulky tertiary butyl groups in the structure.

  相似文献   

11.
An improved method for the preparation of differently charged chelate Pt(II) chloro-complexes is reported. All the complexes have been obtained rapidly and in high yield, by simply reacting equimolar amounts of cis/trans- dichlorobis(dimethylsulphide)platinum(II) with the chelate ligand in an appropriate solvent (CH2Cl2, MeOH or H2O). The ligands chosen were: 1,2-bis(diphenylphosphino)ethane (P—P), pyridine–2-carboxylate (N—O), 2-[(methylthio)methyl]pyridine (N—S), 1,10-phenanthroline (N—N), bis(2-pyridylmethyl)sulphide (N—S—N), di-(2-picolyl)amine (N—N—N), pyridine-2,6-dicarboxylate (O—N—O2−) and 2,6-bis(methylthiomethyl)pyridine (S—N—S).  相似文献   

12.
Some pentaamine complexes of Co(III) with 2,6-bis(aminomethyl)pyridine (bamp), a diamine ligand (or two ammonia ligands) and one unidentate ligand have been prepared (Table 1). In all these species, bamp remains coordinated meridionally under a variety of conditions as shown by 1H- and 13C-NMR. spectroscopy and correlations by stereoretentive reaction cycles. The rates of amine proton exchange and of spontaneous aquation, Hg2+-induced aquation and base hydrolysis of some chloropentaamine complexes have been determined. They essentially follow the patterns observed for complexes with purely aliphatic amine ligands; the presence of a pyridine donor in these complexes does not suggest deviations from the mechanistic schemes usually proposed for the solvolytic reactions investigated.  相似文献   

13.
Enantiomerically pure, C2-symmetric 2,6-bis(pyrazol-3-yl) pyridine ligands were obtained by treatment of diethyl-2,6-pyridinedicarbonate with (1R,4R)-(+)-camphor in the presence of NaH followed by ring closure with hydrazine. After twofold N-alkylation at the pyrazole rings, the addition of iron(II) chloride led to the according pentacoordinate dichloridoiron(II) complexes. All intermediates of the ligand synthesis, the ligands bearing NCH3 and NCH2C6H5 groups and the derived iron(II) complexes were structurally characterized by means of X-ray structure analysis. In-situ reaction with iron(II) carboxylates resulted in the formation of iron(II) carboxylate complexes, which turned out to be highly active in the hydrosilylation of acetophenone. However, even at room temperature, the enantiomeric excess of the product 1-phenylethanol is poor. 57Fe Mössbauer spectroscopy gave an insight into the species formed during catalysis.  相似文献   

14.
The coordination chemistry and cationic binding properties of 2,6-bis(pyrazol-1-ylmethyl)pyridine (L1), 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L2), and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L3) with zinc(II) and cadmium(II) have been investigated. Reactions of L2 with zinc(II) and cadmium(II) nitrate or chloride salts produced monometallic complexes [Zn(NO3)2(L2)] (1), [ZnCl2(L2)] (2), [Cd(NO3)2(L2)] (3), and [CdCl2(L2)] (4). Solid state structures of 1 and 3 confirmed that L2 binds in a tridentate mode. While the nitrates in the zinc complex (1) adopt monodentate binding fashion, in cadmium complex (3), they exhibit bidentate mode. L1L3 show binding efficiencies of 99% for zinc(II), 60% for lead(II), and 30% for cadmium(II) cations from aqueous solutions of the metal ions. Theoretical studies using Density Functional Theory were consistent with the observed extraction results.  相似文献   

15.
Reactions of anhydrous CoX2 (X?=?Br?, SCN?) and Ni(ClO4)2 with N,N,N′,N′-tetraisobutylpyridine-2,6-dithiocarboxamides (S-dbpt), N,N,N′,N′-tetraisopropyl pyridine-2,6-dithiocarboxamides (S-dppt), and N,N,N′,N′-tetraethylpyridine-2,6-dithiocarboxamides (S-dept) lead to the formation of [Co(S-dbpt)Br2] (1), [Co(S-dppt)(SCN)2] (2), and [Ni(S-dept)2]·(ClO4)2·H2O (3), respectively. The X-ray crystal structures of the three S-dapt ligands and three complexes along with spectroscopic analyzes are presented. The molecular structure investigations of the S-dapt ligands show that the thiamide planes are twisted with respect to the pyridine ring, which is more in the case of phenyl groups. The structures of the Co(II) complexes reveal that an increase in steric crowding on the amide side arms of the ligands has no substantial effect on the geometry adopted by the corresponding complexes. The Co(II) gives only 1?:?1 five-coordinate, ion-paired complexes with a distorted square pyramidal geometry. Ni(II), on the other hand, prefers an octahedral geometry with 1?:?2 metal–ligand ratio. The coordination behavior of S-dapt has been compared to the analogous oxo(O-daap) ligands. Lesser propensity of S atom to get involved in H-bonding interactions ensures an S-N-S type of tridentate coordination by S-dapt.  相似文献   

16.
Tripodal Bis(2,6‐iminophosphoranyl)pyridine Ligands: Iron and Cobalt Complexes with a Potential in Ethene Polymerisation By Staudinger Reaction of bis‐2,6‐diphenylphosphanyl‐pyridine with aryl‐, alkyl‐ and silylazides tripodal ligands L = 2,6‐(Ph2P=NR)2C5H3N (R = Ph 1 a , Mes 1 b , Ad  1 c , SiMe3 1 d ) are synthesized. The reaction of ligand 1 b  with equimolar amounts of [CoCl2(THF)2] and [FeCl2(THF)1.5] in THF does not lead to the expected neutral complexes [(k3‐L)MCl2] but to coordination compounds of the composition L2(CoCl2)3 ( 2 a ) und L(FeCl2)2 ( 3 ). By using acetonitrile as solvent or by crystallisation of 2 a from hot acetonitrile the cationic complex [(k3‐L)CoCl(MeCN)]Cl ( 2 b ) is formed as a second product. The molecular structure 2 b has been characterized by an X‐ray single crystal structure analysis (triclinic, P1, Z = 2, a = 1299.8(1), b = 1488.8(2), c = 1674.2(2) pm, α = 82.911(13)°, β = 76.715(12)°, γ = 72.758(11)°). A preliminary test with 3 shows, that coordination compounds of the ligand system introduced here have potential as catalysts in methyl alumoxane mediated ethene polymerisation.  相似文献   

17.
Heptacoordinated tin complexes with pentadentate redox-active ligands containing the diiminopyridine fragment combined with two sterically hindered phenolate coordination centers, LSn-Cl2 and L'SnCl2 (L and L' are dianions of deprotonated 2,6-bis[2,4-di-tert-butyl-6-(methylidenylamino) phenol]pyridine and 2,6-bis[2,4-di-tert-butyl-6-(ethylidenylamino)phenol]pyridine, respectively), are synthesized. The molecular and electronic structures of the synthesized compounds were studied by X-ray diffraction analysis (for complex I, CIF file CCDC no. 1557838), a set of spectral methods, and quantum-chemical calculations. The redox properties of the obtained complexes are characterized by cyclic voltammetry.  相似文献   

18.
Crown ether complexes of sodium and potassium 2-(benzotriazol-2-yl)phenolates were synthesized and characterized. In the presence of BnOH these complexes are highly active catalysts for the controlled ring-opening polymerization of rac-lactide. The polymerizations are iso-selective and the Pm of polylactide reached 0.77 when the polymerization was performed in toluene at ?60°C; whereas heterorich-polylactide was obtained when the polymerization was carried out in CH2Cl2 or THF.  相似文献   

19.
The reaction of 4-aminodiphenylamine or 2-aminofluorene with two equivalents of PPh2Cl in the presence of Et3N gives new bis(diphenylphosphino)amines N,N-bis(diphenylphosphino)-4-aminodiphenylamine 1 and N,N-bis(diphenylphosphino)-2-aminofluorene 2 in good yields. Oxidation of 1 or 2 with hydrogen peroxide, elemental sulfur or gray selenium affords the corresponding chalcogen derivatives. The palladium and platinum complexes of these P–N–P donor ligands were prepared by the reaction of the bis(phosphino)amines with MCl2(cod) (M = Pd or Pt, cod = cycloocta-1,5-diene). All the new compounds have been characterized by analytical and spectroscopic methods, including 1H-31P NMR, 1H-13C HETCOR, or 1H-1H COSY correlation experiments. The Pd(II) complexes were investigated as catalysts in the Suzuki and Heck reactions; both showed good catalytic activity affording high yields of the desired products.  相似文献   

20.
The hybrid S/N/S donor ligands 2,6-bis(methylthiomethyl)pyridine (L1) and 2,6-bis(p-tolylthiomethyl)pyridine (L2) react with the [M(CO)5(THF)] (M = Mo or W) compounds to form complexes of general formula [M(CO)4L] (M = Mo, L = L2; M = W, L = L1 or L2), where both L1 and L2 act in a S/N bidentate chelate fashion. In solution, these complexes undergo three fluxional processes, viz. inversion at the coordinated S atom, S1–S2 switching, and combined inversion and S1–S2 switching, leading to an interconversion of the four possible permutational isomers. Energy barriers for all three processes have been evaluated by standard one-dimensional band-shape analysis techniques. The mechanism of the S1–S2 switch is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号