首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid‐phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high‐performance liquid chromatography. Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent‐based molecularly imprinted polymer coupled with solid‐phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples.  相似文献   

2.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

3.
《Analytical letters》2012,45(9):1476-1484
This paper reports the extraction of two phenolic acids from Herba Artemisiae Scopariae using deep eutectic solvents that were synthesized with various salt and hydrogen bond donors. The optimal conditions were found to be 50% of a synthesized deep eutectic solvent from tetramethyl ammonium chloride and urea (1:4) mixed with methanol/water (60:40, v/v). Phenolic acid extraction was optimized using an ultrasonic power of 89 W for 30 min with a solid/liquid ratio of 1:10. Under the optimized conditions, good calibration curves were observed at phenolic acid concentrations ranging from 10.0 to 500.0 µg/mL. The method recovery ranged from 97.3% to 100.4%, and the inter-day and intra-day relative standard deviations were less than 5%. Under the optimal extraction conditions, the amounts of chlorogenic acid and caffeic acid extracted from Herba Artemisiae Scopariae were 9.35 mg/g and 0.31 mg/g, respectively.  相似文献   

4.
A molecularly imprinted polymer based on a ternary deep eutectic solvent comprised of choline chloride/caffeic acid/ethylene glycol was prepared. The caffeic acid in the ternary deep eutectic solvent was used as both a monomer and template. The molecularly imprinted polymer based on the ternary deep eutectic solvent was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field‐emission scanning electron microscopy, Brunauer–Emmett–Teller surface area analysis, atomic force microscopy, and elemental analysis. A series of molecularly imprinted polymers based on choline chloride/caffeic acid/ethylene glycol with different molar ratios was prepared and applied to the molecular recognition of polyphenols. A comparison of the recognition ability of molecularly imprinted polymers to polyphenols revealed that the choline chloride/caffeic acid/ethylene glycol (1:0.4:1, molar ratio) molecularly imprinted polymer had the best molecular recognition effect with 132 μg/g of protocatechuic acid, 104 μg/g of catechins, 80 μg/g of epicatechin, and 123 μg/g of caffeic acid in 6 h, as well as good molecular recognition ability for polyphenols from a Radix Asteris sample. These results show that the ternary deep eutectic solvent based molecularly imprinted polymer is a potential medium that can be applied to drug purification, drug delivery, and drug analysis.  相似文献   

5.
Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux‐vomica extract powder.  相似文献   

6.
Ternary deep eutectic solvent magnetic molecularly imprinted polymers grafted on silica were developed for the selective recognition and separation of theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid from green tea through dispersive magnetic solid‐phase microextraction. A new ternary deep eutectic solvent was adopted as a functional monomer. The materials obtained were characterized by FTIR spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, NMR spectroscopy, and powder X‐ray diffraction. The practical recovery of the theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid isolated with ternary deep eutectic solvent magnetic molecularly imprinted polymers in green tea were 91.82, 92.13, 89.96, and 90.73%, respectively, and the actual amounts extracted were 5.82, 4.32, 18.36, and 3.69 mg/g, respectively. The new method involving the novel material coupled with dispersive magnetic solid‐phase microextraction showed outstanding recognition, selectivity and excellent magnetism, providing a new perspective for the separation of bioactive compounds.  相似文献   

7.
The selective preconcentration of estradiol was explored using the recognition ability of a molecularly imprinted polymer (MIP) in the solid phase extraction (SPE) format. Polymeric particles were imprinted with 17β-estradiol using methacrylic acid as functional monomer and divinylbenzene as crosslinker. Binding studies of these polymeric particles towards 17β-estradiol showed selectivity over non-imprinted polymers, using acetonitrile as solvent. The imprinted polymer showed a recovery of 88% for β-estradiol in deionized water and 81% in surface water. The selectivity of the MIP over the non-imprinted polymer was relatively low, only 10% higher recovery. The results indicate that the MIP imprinted with 17β-estradiol does not appear to provide a viable approach to be used in a sample clean-up or enrichment step for the determination of estradiol in aqueous systems.  相似文献   

8.
Molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids (ILs) were prepared as packing materials for the solid-phase extraction (SPE) of fucoidan and laminarin. The prepared materials were characterized by field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The polymers modified by the deep eutectic solvent prepared by choline chloride and urea had the best extraction efficiencies for fucoidan and laminarin (95.5% and 87.6%, respectively) from marine kelp. The relative standard deviations for intraday and interday determination were less than 4.23%. The molecularly imprinted polymers modified by deep eutectic solvents and ILs showed outstanding applications for SPE and may offer novel sample pretreatment for other analytes.  相似文献   

9.
A simple, selective, and reproducible molecularly imprinted SPE coupled with HPLC method was developed for monitoring quinoxaline‐1,4‐dioxides in feeds. Molecularly imprinted polymers were synthesized in methanol using mequindox (MEQ) as template molecule and acrylamide as functional monomer by bulk polymerization. Under the optimum SPE conditions, the novel polymer sorbents can selectively extract and enrich carbadox, MEQ, quinocetone, and cyadox from a variety of feeds. The molecularly imprinted SPE cartridge was better than nonimprinted, C18, and HLB cartridges in terms of both recovery and precision. Mean recoveries of four quinoxaline‐1,4‐dioxides from six kinds of feeds spiked at 1.0, 10, and 100 mg/kg ranged between 75.2 and 94.7% with RSDs of less than 10%. The decision limits (CCαs) and the detection capabilities (CCβs) of four analytes were 0.15–0.20 mg/kg and 0.44–0.56 mg/kg, respectively. The class selectivity of the polymers was evaluated by checking three drugs with different molecular structures to that of MEQ.  相似文献   

10.
Some new molecularly imprinted polymers (MIPs) were prepared by different protocols involving vanillin as the imprinted molecule, methacrylic acid (= 2‐methylprop‐2‐enoic acid; MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA = 2‐methylprop‐2‐enoic acid ethane‐1,2‐diyl ester) as the cross‐linking agent. The adsorption property of the imprinted polymers was studied by UV spectrophotometry and HPLC. The results indicated that the porogen solvent had a certain influence on the adsorption performance of the polymer. The vanillin‐imprinted polymer MIP1 prepared with MeOH as porogen, exhibited advantageous characteristics, i.e., a high binding activity, a good selectivity, and a rapid adsorption equilibrium. The binding parameters studied by Scatchard analysis established that there are two types of binding sites in MIP1. Finally, by packing an SPE column (SPE = solid‐phase extraction) with the polymer MIP1, the vanillin was separated and enriched successfully by this sorbent from the samples of Vanilla fragrans and beer.  相似文献   

11.
The combination of molecularly imprinted polymers (MIPs) and solid phase extraction (SPE) is reviewed. MIPs, which have high selectivity and affinity for a predetermined molecule (template), have been used as sorbents for SPE to selectively isolate analytes from biological, pharmaceutical, and environmental samples. Solid phase extraction with molecularly imprinted polymers (MIP–SPE) is a promising technique which allows specific analytes to be selectively extracted from complex matrices. This survey summarizes the characteristics, development and application of MIP–SPE in recent years. Existed problems and the future direction of MIP–SPE are also discussed.  相似文献   

12.
A new LC method to detect fusaric acid (FA) in maize is reported based on a molecularly imprinted SPE clean‐up using mimic‐templated molecularly imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic synthesis. Both acidic and basic functional monomers were predicted to have favorable binding interactions by MP2 ab initio calculations. Imprinted polymers synthesized with methacrylic acid or 2‐dimethylaminoethyl methacrylate exhibited imprinting effects in SPE analysis. FA levels were determined using RP ion‐pairing chromatography with diode‐array UV detection and tetrabutylammonium hydrogen sulfate in the mobile phase. A method was developed to detect FA in maize using molecularly imprinted SPE analysis within the range of 1–100 μg/g with recoveries between 83.9 and 92.1%.  相似文献   

13.
To clarify the role of diluents in the preparation of molecularly imprinted polymers utilizing only hydrogen bonding, we investigated the effects of diluents by using different solvents. Melatonin (N-acetyl-5-methoxytryptamine), an amide bond and indole ring-containing hormone was chosen as the target molecule. N-Propionyl-5-methoxytryptamine was used as the pseudo template, methacrylic acid as the functional monomer, and solvents were used as diluents. Interactions between the template, the functional monomer, melatonin, and the solvents, were observed by 1H NMR spectroscopy. The polymers were evaluated by high-performance liquid chromatography. The results suggest the hydrogen bonding-acceptor capacity of the solvent is the most important factor in the preparation of molecularly imprinted polymers for hydrogen bonding-donating molecules. Hydrogen bonding between the template, the functional monomer, and solvent can be estimated from the chemical shifts in 1H NMR spectra of those molecules in the solvent.  相似文献   

14.
In this paper, the novel surface molecularly imprinted polymers based on dendritic‐grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic nanoparticles as supporting materials, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The characteristics of magnetic nanoparticles and polymers were measured by transmission electron microscope and SEM, respectively. The enriching ability of molecularly imprinted polymers was measured by Freundlich Isotherm. The molecularly imprinted polymers were used as dispersive SPE materials to enrich, separate, and detect glibenclamide in health foods by HPLC. The average recoveries of glibenclamide in spiked health foods were 81.46–93.53% with the RSD < 4.07%.  相似文献   

15.
A highly selective sample cleanup procedure combined with molecularly imprinted SPE was developed for the isolation of crystal violet from seawater and seafood samples. The molecularly imprinted polymer was prepared using crystal violet as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. The crystal violet‐imprinted polymer was used as the selective sorbent for the SPE of crystal violet. An off‐line molecularly imprinted SPE method followed by HPLC with diode‐array detection for the analysis of crystal violet was also established. Good linearity on the molecularly imprinted SPE columns was obtained from 0 to 200 μg/L (R2 > 0.99). The result demonstrated that the proposed method can be used for the direct determination of crystal violet in seawater and seafood samples. Finally, five samples were analyzed and the following crystal violet concentrations were obtained: 0.92 and 0.52 μg/L in two seawater samples, as well as 0.36 and 0.27 μg/kg in two seafood samples. There is no crystal violet detected in the third seawater sample.  相似文献   

16.
反乌头酸分子印迹聚合物微球的制备及其分子识别功能   总被引:2,自引:0,他引:2  
姜勇  童爱军 《分析化学》2004,32(11):1463-1466
以乙腈为分散剂,采用沉淀聚合法合成了反乌头酸分子印迹聚合物微球。研究了合成反应条件对聚合物形貌的影响,发现聚合前主客体氢键络合物和功能单体氢键低聚体是控制微球形成及其粒径大小的关键因素。通过振荡吸附法对聚合物的结合特性进行了评价,发现印迹聚合物微球对模板分子的识别选择性优于块状印迹聚合物和非印迹聚合物。  相似文献   

17.
The determination of target molecules in complicated matrices such as biological samples is largely dependent on sample pretreatment. Molecularly imprinted solid-phase extraction (SPE), using molecularly imprinted polymers as the adsorbent, has been demonstrated to be effective for the selective enrichment of target molecules in biological samples. In this study, molecularly imprinted polymeric microspheres were fabricated by two-step swelling polymerization using polystyrene particles as seeds, nicotinamide as the template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The molecularly imprinted polymeric microspheres were packed into empty SPE cartridges, and the spiked urine and serum samples were loaded separately. After an initial washing and elution step, the effluents were analyzed by high-performance liquid chromatography (HPLC) using 1:9 methanol/0.05% phosphoric acid. The obtained molecularly imprinted polymeric microspheres were uniform, and the spherical particles were well distributed. The established method was validated, and the results showed that the method was linear from 0.499 to 19.96?µg?mL?1. The limits of detection and quantification for nicotinamide were 0.3 and 0.9?µg?mL?1, respectively. The relative standard deviations were 1.55 and 2.86% in urine and serum, respectively. The spiked recoveries of nicotinamide were 86.0–98.8% and 87.0–96.8% in urine and serum, respectively. The molecularly imprinted SPE and HPLC methods in this study are useful for the pretreatment and determination of the target compounds in these matrices.  相似文献   

18.
Novel molecularly imprinted polymers of phthalate esters were prepared by atom transfer radical polymerization using methyl methacrylate as functional monomer, cyclohexanone as solvent, cuprous chloride as catalyst, 1‐chlorine‐1‐ethyl benzene as initiator and 2,2‐bipyridyl as cross‐linker in the mixture of methanol and water (1:1, v/v). The effect of reaction conditions such as monomer ratio and template on the adsorption properties was investigated. The optimum condition was obtained by an orthogonal experiment. The obtained polymers were characterized using scanning electron microscopy. The binding property was studied with both static and dynamic methods. Results showed that the polymers exhibited excellent recognition capacity and outstanding selectivity for ten phthalate esters. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction were systematically investigated. An analytical method based on the molecularly imprinted coupled with gas chromatography and flame ionization detection was successfully developed for the simultaneous determination of ten phthalate esters from edible oil. The method detection limits were 0.10–0.25 μg/mL, and the recoveries of spiked samples were 82.5–101.4% with relative standard deviations of 1.24–5.37% (n = 6).  相似文献   

19.
Two molecularly imprinted polymers binding to analgesic acetanilide were prepared using either dual functional monomers of calix[4]arene derivative and acrylamide or single monomer acrylamide, respectively. The polymers were ground, sieved and investigated by equilibrium binding experiment to evaluate their recognition properties for the template and other substrates. Scatchard analysis showed that homogeneous recognition sites were formed in the imprinted polymer matrix. Our results demonstrated that the polymer using two functional monomers exhibited better selectivity for the template. This study may open new frontiers for the development and application of imprinted polymers, such as drug separation and purification.  相似文献   

20.
Cobb Z  Sellergren B  Andersson LI 《The Analyst》2007,132(12):1262-1271
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号