首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[Ni(1-x)Cu(x)(tmdt)(2)] (tmdt = trimethylenetetrathiafulvalenedithiolate) was prepared for realizing molecular Kondo systems. Magnetic moments (S = (1)/(2)) are considered to exist at the central {CuS(4)} parts of Cu(tmdt)(2) molecules. The χT-versus-T curve of the system with x ≈ 0.15 showed a broad peak at ~10 K. The decrease in the χT value below 10 K is consistent with a singlet ground state, as expected for a Kondo system. However, in the system with x ≈ 0.27, the χT value decreased when the temperature was lowered to 2 K, indicating antiferromagnetic interactions between magnetic moments through π-d interactions. Although the susceptibility anomaly suggested that the π-d interactions become important at T < 20 K, the observed resistivity (ρ(obs)) showed no resistivity minimum characteristic of a Kondo system down to 4.2 K. However, the differential resistivity Δρ(T) = ρ(obs) - ρ(L)(T) showed a logarithmic resistivity increase at 8-20 K with decreasing temperature, where ρ(L)(T) is a fitted function of ρ(obs) obtained at T > 50 K that is considered to represent approximately the temperature dependence of the resistivity without spin scattering of the conduction electrons.  相似文献   

2.
Observed pseudo-first-order rate constants (k(obs)) of the hydride-transfer reactions from isopropyl alcohol (i-PrOH) to two NAD(+) analogues, 9-phenylxanthylium ion (PhXn(+)) and 10-methylacridinium ion (MA(+)), were determined at temperatures ranging from 49 to 82 degrees C in i-PrOH containing various amounts of AN or water. Formations of the alcohol-cation ether adducts (ROPr-i) were observed as side equilibria. The equilibrium constants for the conversion of PhXn(+) to PhXnOPr-i in i-PrOH/AN (v/v = 1) were determined, and the equilibrium isotope effect (EIE = K(i-PrOH)/K(i-PrOD)) at 62 degrees C was calculated to be 2.67. The k(H) of the hydride-transfer step for both reactions were calculated on the basis of the k(obs) and K. The corresponding deuterium kinetic isotope effects (e.g., KIE(OD)(H) = k(H)(i-PrOH)/k(H)(i-PrOD) and KIE(beta-D6)(H) = k(obs)(i-PrOH)/k(obs)((CD3)2CHOH)), as well as the activation parameters, were derived. For the reaction of PhXn(+) (62 degrees C) and MA(+) (67 degrees C), primary KIE(alpha-D)(H) (4.4 and 2.1, respectively) as well as secondary KIE(OD)(H) (1.07 and 1.18) and KIE(beta-D6)(H) (1.1 and 1.5) were observed. The observed EIE and KIE(OD)(H) were explained in terms of the fractionation factors for deuterium between OH and OH(+)(OH(delta+)) sites. The observed inverse kinetic solvent isotope effect for the reaction of PhXn(+) (k(obs)(i-PrOH)/k(obs)(i-PrOD) = 0.39) is consistent with the intermolecular hydride-transfer mechanism. The dramatic reduction of the reaction rate for MA(+), when the water or i-PrOH cosolvent was replaced by AN, suggests that the hydride-transfer T.S. is stabilized by H-bonding between O of the solvent OH and the substrate alcohol OH(delta+). This result suggests an H-bonding stabilization effect on the T.S. of the alcohol dehydrogenase reactions.  相似文献   

3.
We describe an experiment, in situ temperature jump dynamic nuclear polarization (TJ-DNP), that is demonstrated to enhance sensitivity in liquid-state NMR experiments of low-gamma spins--13C, 15N, etc. The approach consists of polarizing a sample at low temperature using high-frequency (140 GHz) microwaves and a biradical polarizing agent and then melting it rapidly with a pulse of 10.6 microm infrared radiation, followed by observation of the NMR signal in the presence of decoupling. In the absence of polarization losses due to relaxation, the enhancement should be epsilon+ = epsilon(T(obs)/T(mu)(wave)), where epsilon+ is the observed enhancement, epsilon is the enhancement obtained at the temperature where the polarization process occurs, and T(mu)(wave) and T(obs) are the polarization and observation temperatures, respectively. In a single experimental cycle, we observe room-temperature enhancements, epsilon(dagger), of 13C signals in the range 120-400 when using a 140 GHz gyrotron microwave source, T(mu)(wave) = 90 K, and T(obs) = 300 K. In addition, we demonstrate that the experiment can be recycled to perform signal averaging that is customary in contemporary NMR spectroscopy. Presently, the experiment is applicable to samples that can be repeatedly frozen and thawed. TJ-DNP could also serve as the initial polarization step in experiments designed for rapid acquisition of multidimensional spectra.  相似文献   

4.
Effects of     
Effects of cetyltrimethylammonium bromide (CTABr) micelles on second-order rate constants (k(n)(obs)) for nucleophilic reactions of amines (piperidine and n-butylamine) with ionized phenyl salicylate (PS(-)) reveal a nonlinear decrease with the increase in [D(n)] (where [D(n)] = [CTABr](T) - cmc) at a constant [NaBr] and 35 degrees C. The observed data, at a constant [NaBr], fit reasonably well to a pseudophase model of micelles, and such a data fit gives kinetic parameters such as CTABr micellar binding canstant (K(S)) of PS(-). The effect of [NaBr] upon K(S) is explained with the empirical relationship K(S) = K(S)(0)/(1 + psi[NaBr]), where psi is an empirical parameter.  相似文献   

5.
Formation kinetics of the metal-metal bonded binuclear [(CN)(5)Pt-Tl(CN)](-) (1) and the trinuclear [(CN)(5)Pt-Tl-Pt(CN)(5)](3-) (2) complexes is studied, using the standard mix-and-measure spectrophotometric method. The overall reactions are Pt(CN)(4)(2-) + Tl(CN)(2)(+) <==> 1 and Pt(CN)(4)(2-) + [(CN)(5)Pt-Tl(CN)](-) <==> 2. The corresponding expressions for the pseudo-first-order rate constants are k(obs) = (k(1)[Tl(CN)(2)(+)] + k(-1))[Tl(CN)(2)(+)] (at Tl(CN)(2)(+) excess) and k(obs) = (k(2b)[Pt(CN)(4)(2-)] + k(-2b))[HCN] (at Pt(CN)(4)(2-) excess), and the computed parameters are k(1) = 1.04 +/- 0.02 M(-2) s(-1), k(-1) = k(1)/K(1) = 7 x 10(-5) M(-1) s(-1) and k(2b) = 0.45 +/- 0.04 M(-2) s(-1), K(2b) = 26 +/- 6 M(-1), k(-2b) = k(2b)/K(2b) = 0.017 M(-1) s(-1), respectively. Detailed kinetic models are proposed to rationalize the rate laws. Two important steps need to occur during the complex formation in both cases: (i) metal-metal bond formation and (ii) the coordination of the fifth cyanide to the platinum site in a nucleophilic addition. The main difference in the formation kinetics of the complexes is the nature of the cyanide donor in step ii. In the formation of [(CN)(5)Pt-Tl(CN)](-), Tl(CN)(2)(+) is the source of the cyanide ligand, while HCN is the cyanide donating agent in the formation of the trinuclear species. The combination of the results with previous data predict the following reactivity order for the nucleophilic agents: CN(-) > Tl(CN)(2)(+) > HCN.  相似文献   

6.
Formation kinetics of the metal-metal bonded [(CN)(5)PtTl(CN)(3)](3)(-) complex from Pt(CN)(4)(2)(-) and Tl(CN)(4)(-) has been studied in the pH range of 5-10, using standard mix-and-measure spectrophotometric technique at pH 5-8 and stopped-flow method at pH > 8. The overall order of the reaction, Pt(CN)(4)(2)(-) + Tl(CN)(4)(-) right harpoon over left harpoon [(CN)(5)PtTl(CN)(3)](3)(-), is 2 in the slightly acidic region and 3 in the alkaline region, which means first order for the two reactants in both cases and also for CN(-) at high pH. The two-term rate law corresponds to two different pathways via the Tl(CN)(3) and Tl(CN)(4)(-) complexes in acidic and alkaline solution, respectively. The two complexes are in fast equilibrium, and their actual concentration ratio is controlled by the concentration of free cyanide ion. The following expression was derived for the pseudo-first-order rate constant of the overall reaction: k(obs) = (k(1)(a)[Tl(CN)(4)(-) + (k(1)(a)/K(f)))(1/(1 + K(p)[H(+)]))[CN(-)](free) + k(1)(b)[Tl(CN)(4)(-)] + (k(1)(b)/K(f)), where k(1)(a) and k(1)(b) are the forward rate constants for the alkaline and slightly acidic paths, K(f) is the stability constant of [(CN)(5)PtTl(CN)(3)](3)(-), and K(p) is the protonation constant of cyanide ion. k(1)(a) = 143 +/- 13 M(-)(2) s(-)(1), k(1)(b) = 0.056 +/- 0.004 M(-)(1) s(-)(1), K(f) = 250 +/- 54 M(-)(1), and log K(p) = 9.15 +/- 0.05 (I = 1 M NaClO(4), T = 298 K). Two possible mechanisms were postulated for the overall reaction in both pH regions, which include a metal-metal bond formation step and the coordination of the axial cyanide ion to the platinum center. The alternative mechanisms are different in the sequence of these steps.  相似文献   

7.
Ionization conditions of each ionic species in lithium ionic liquid electrolytes, LiTFSI/BMI-TFSI and LiTFSI/BDMI-TFSI, were confirmed based on the diffusion coefficients of the species measured by the pulsed gradient spin-echo (PGSE) NMR technique. We found that the diffusion coefficient ratios of the cation and anion species D(Li)(obs)/D(F)(obs) of the lithium salt and D(H)(obs)/D(F)(obs) of the ionic liquid solvent were effective guides to evaluate the ionization condition responsible for their mobility. Lithium ions were found to be stabilized, forming the solvated species as Li(TFSI)3(2-). TFSI- anion coordination could be relaxed by the dispersion of silica to form a gel electrolyte, LiTFSI/BDMI-TFSI/silica. It is expected that the oxygen sites on the silica directly attract Li+, releasing the TFSI- coordination. The lithium species, loosing TFSI- anions, kept a random walk feature in the gel without the diffusion restriction attributed from the strong chemical and morphological effect as that in the gel with the polymer. We can conclude that the silica dispersion is a significant approach to provide the appropriate lithium ion condition as a charge-transporting species in the ionic liquid electrolytes.  相似文献   

8.
The Fe(II) of the binuclear Fe(II)Fe(III) active site of pig purple acid phosphatase (uteroferrin) has been replaced in turn by five M(II) ions (Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)). An uptake of 1 equiv of M(II) is observed in all cases except that of Cu(II), when a second more loosely bound Cu(II) is removed by treatment with edta. The products have been characterized by different analytical procedures and by UV-vis spectrophotometry. At 25 degrees C, I = 0.100 M (NaCl), the nonenzymatic reactions with H(2)PO(4)(-) give the mu-phosphato product, and formation constants K/M(-1) show an 8-fold spread at pH 4.9 of 740 (Mn), 165 (Fe), 190 (Co), 90 (Ni), 800 (Cu), 380 (Zn). The variations in K correlate well with stability constants for the complexing of H(2)PO(4)(-) and (CH(3)O)HPO(3)(-) with M(II) hexaaqua ions. At pH 4.9 with [H(2)PO(4)(-)] > or = 3.5 mM rate constants k(obs) decrease, and an inhibition process in which a second [H(2)PO(4)(-)] coordinates to the dinuclear center is proposed. The mechanism considered accounts for most but not all of the features displayed. Thus K(1) values for the coordination of phosphate to M(II) are in the range10-60 M(-1), whereas K(2) values for the bridging of the phosphate to Fe(III) are in the narrower range 7.8-12.4. From the fits described K(i) approximately 10(3) M(-1) for the inhibition step, which is independent of the identity of M(II). Values of k(obs) decrease with increasing pH, giving pK(a) values which are close to 3.8 and independent of M(II) (Fe(II), Zn(II), Mn(II)). The acid dissociation process is assigned to Fe(III)-OH(2) to Fe(III)-OH(-), where OH(-) is less readily displaced by phosphate.  相似文献   

9.
Tanaka M  Tabata M 《Inorganic chemistry》2007,46(23):9975-9978
For the title complexes, the value of formation constant K(CuL+A) is higher than that of K1(CuA2). According to the mechanistic consideration, log K(CuL+A) is calculated for regular Cu(II) complexes with neither special enhancement nor diminution of the stability constant. Then, the difference of log K(CuL+A)(obs)-log K(CuL+)(calc) represents extrastabilization due to the hydrophobic interactions and the aromatic pi-pi interactions. The former has been found to be proportional to the free energy of the transfer of side chains of aminocarboxylates A. The discrimination between the hydrophobic and the aromatic pi-pi interactions has been attempted.  相似文献   

10.
The effect of cation size on the rate and energy of electron transfer to [(M(+))(acceptor)] ion pairs is addressed by assigning key physicochemical properties (reactivity, relative energy, structure, and size) to an isoelectronic series of well-defined M(+)-acceptor pairs, M(+) = Li(+), Na(+), K(+). A 1e(-) acceptor anion, alpha-SiV(V)W(11)O(40)(5-) (1, a polyoxometalate of the Keggin structural class), was used in the 2e(-) oxidation of an organic electron donor, 3,3',5,5'-tetra-tert-butylbiphenyl-4,4'-diol (BPH(2)), to 3,3',5,5'-tetra-tert-butyldiphenoquinone (DPQ) in acetate-buffered 2:3 (v/v) H(2)O/t-BuOH at 60 degrees C (2 equiv of 1 are reduced by 1e(-) each to 1(red), alpha-SiV(IV)W(11)O(40)(6-)). Before an attempt was made to address the role of cation size, the mechanism and conditions necessary for kinetically well behaved electron transfer from BPH(2) to 1 were rigorously established by using GC-MS, (1)H, (7)Li, and (51)V NMR, and UV-vis spectroscopy. At constant [Li(+)] and [H(+)], the reaction rate is first order in [BPH(2)] and in [1] and zeroth order in [1(red)] and in [acetate] (base) and is independent of ionic strength, mu. The dependence of the reaction rate on [H(+)] is a function of the constant, K(a)1, for acid dissociation of BPH(2) to BPH(-) and H(+). Temperature dependence data provided activation parameters of DeltaH = 8.5 +/- 1.4 kcal mol(-1) and DeltaS = -39 +/- 5 cal mol(-1) K(-1). No evidence of preassociation between BPH(2) and 1 was observed by combined (1)H and (51)V NMR studies, while pH (pD)-dependent deuterium kinetic isotope data indicated that the O-H bond in BPH(2) remains intact during rate-limiting electron transfer from BPH(2) and 1. The formation of 1:1 ion pairs [(M(+))(SiVW(11)O(40)(5-))](4-) (M(+)1, M(+) = Li(+), Na(+), K(+)) was demonstrated, and the thermodynamic constants, K(M)(1), and rate constants, k(M)(1), associated with the formation and reactivity of each M(+)1 ion pair with BPH(2) were calculated by simultaneous nonlinear fitting of kinetic data (obtained by using all three cations) to an equation describing the rectangular hyperbolic functional dependence of k(obs) values on [M(+)]. Constants, K(M)(1)red, associated with the formation of 1:1 ion pairs between M(+) and 1(red) were obtained by using K(M)(1) values (from k(obs) data) to simultaneously fit reduction potential (E(1/2)) values (from cyclic voltammetry) of solutions of 1 containing varying concentrations of all three cations to a Nernstian equation describing the dependence of E(1/2) values on the ratio of thermodynamic constants K(M)(1) and K(M)(1)red. Formation constants, K(M)(1), and K(M)(1)red, and rate constants, k(M)(1), all increase with the size of M(+) in the order K(Li)(1) = 21 < K(Na)(1) = 54 < K(K)(1) = 65 M(-1), K(Li)(1)red = 130 < K(Na)(1)red = 570 < K(K)(1)red = 2000 M(-1), and k(Li)(1) = 0.065 < k(Na)(1) = 0.137 < k(K)(1) = 0.225 M(-1) s(-1). Changes in the chemical shifts of (7)Li NMR signals as functions of [Li(5)1] and [Li(6)1(red)] were used to establish that the complexes M(+)1 and M(+)1(red) exist as solvent-separated ion pairs. Finally, correlation between cation size and the rate and energy of electron transfer was established by consideration of K(M)(1), k(M)(1), and K(M)(1)red values along with the relative sizes of the three M(+)1 pairs (effective hydrodynamic radii, r(eff), obtained by single-potential step chronoamperometry). As M(+) increases in size, association constants, K(M)(1), become larger as smaller, more intimate solvent-separated ion pairs, M(+)1, possessing larger electron affinities (q/r), and associated with larger k(M)(1)() values, are formed. Moreover, as M(+)1 pairs are reduced to M(+)1(red) during electron transfer in the activated complexes, [BPH(2), M(+)1], contributions of ion pairing energy (proportional to -RT ln(K(M)(1)red/K(M)(1)) to the standard free energy change associated with electron transfer, DeltaG degrees (et), increase with cation size: -RT ln(K(M)(1)red/K(M)(1)) (in kcal mol(-1)) = -1.2 for Li(+), -1.5 for Na(+), and -2.3 for K(+).  相似文献   

11.
The formation of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12 (adenosylcobalamin)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium has been studied by using time-resolved continuous-wave electron paramagnetic resonance (EPR) spectroscopy in a cryosolvent system. The 41% v/v DMSO/water cryosolvent allows mixing of holoenzyme and substrate, (S)-2-aminopropanol, at 230 K under conditions of kinetic arrest. Temperature step from 230 to 234-248 K initiates the cleavage of the cobalt-carbon bond and the monoexponential rise (rate constant, k(obs) = tau(obs)(-1)) of the EPR-detected Co(II)-substrate radical pair state. The detection deadtime: tau(obs) ratio is reduced by >10(2), relative to millisecond rapid mixing experiments at ambient temperatures. The EPR spectrum acquisition time is 5tau(obs), the approximately 10(2)-fold slower rate of the substrate radical rearrangement reaction relative to k(obs), and the reversible temperature dependence of the amplitude indicate that the Co(II)-substrate radical pair and ternary complex are essentially at equilibrium. The reaction is thus treated as a relaxation to equilibrium by using a linear two-step, three-state mechanism. The intermediate state in this mechanism, the Co(II)-5'-deoxyadenosyl radical pair, is not detected by EPR at signal-to-noise ratios of 10(3), which indicates that the free energy of the Co(II)-5'-deoxyadenosyl radical pair state is >3.3 kcal/mol, relative to the Co(II)-substrate radical pair. Van't Hoff analysis yields DeltaH13 = 10.8 +/- 0.8 kcal/mol and DeltaS13 = 45 +/- 3 cal/mol/K for the transition from the ternary complex to the Co(II)-substrate radical pair state. The free energy difference, DeltaG13, is zero to within one standard deviation over the temperature range 234-248 K. The extrapolated value of DeltaG13 at 298 K is -2.6 +/- 1.2 kcal/mol. The estimated EAL protein-associated contribution to the free energy difference is DeltaG(EAL) = -24 kcal/mol at 240 K, and DeltaH(EAL) = -13 kcal/mol and DeltaS(EAL) = 38 cal/mol/K. The results show that the EAL protein makes both strong enthalpic and entropic contributions to overcome the large, unfavorable cobalt-carbon bond dissociation energy, which biases the reaction in the forward direction of Co-C bond cleavage and Co(II)-substrate radical pair formation.  相似文献   

12.
The rate coefficient of the OH reaction with the perfluoroaldehydes C(3)F(7)CHO and C(4)F(9)CHO have been determined in the temperature range 252-373 K using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) method: k(C(3)F(7)CHO+OH) = (2.0 +/- 0.6) x 10(-12) exp[-(369 +/- 90)/T] and k(C(4)F(9)CHO+OH) = (2.0 +/- 0.5) x 10(-12) exp[-(356 +/- 70)/T] cm(3) molecule(-1) s(-1), corresponding to (5.8 +/- 0.6) x 10(-13) and (6.1 +/- 0.5) x 10(-13) cm(3) molecule(-1) s(-1), respectively, at 298 K. The UV absorption cross sections of these two aldehydes and CF(3)(CF(2))(5)CH(2)CHO have been measured over the range 230-390 nm at 298 K and also at 328 K for CF(3)(CF(2))(5)CH(2)CHO. The obtained results for C(3)F(7)CHO and C(4)F(9)CHO are in good agreement with two recent determinations but the maximum value of the absorption cross section for CF(3)(CF(2))(5)CH(2)CHO is over a factor of two lower than the single one recently published. The photolysis rates of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO have been measured under sunlight conditions in the EUPHORE simulation chamber in Valencia (Spain) at the beginning of June. The photolysis rates were, respectively, J(obs) = (1.3 +/- 0.6) x 10(-5), (1.9 +/- 0.8) x 10(-5) and (0.6 +/- 0.3) x 10(-5) s(-1). From the J(obs) measurements and calculated photolysis rate J(calc), assuming a quantum yield of unity across the atmospheric range of absorption of the aldehydes, quantum yields J(obs)/J(calc) = (0.023 +/- 0.012), (0.029 +/- 0.015) and (0.046 +/- 0.028) were derived for the photodissociation of C(3)F(7)CHO, C(4)F(9)CHO and CF(3)(CF(2))(5)CHO, respectively. The atmospheric implication of the data obtained in this work is discussed. The main conclusion is that the major atmospheric removal pathway for fluoroaldehydes will be photolysis, which under low NO(x) conditions, may be a source of fluorinated carboxylic acids in the troposphere.  相似文献   

13.
A series of new metalloradical rhodium and iridium complexes [M(II)(cod)(N-ligand)](2+) in the uncommon oxidation state +II were synthesized by one-electron oxidation of their [M(I)(cod)(N-ligand)](+) precursors (M=Rh, Ir; cod=(Z,Z)-1,5-cyclooctadiene; and N-ligand is a podal bis(pyridyl)amine ligand: N,N-bis(2-pyridylmethyl)amine (dpa), N-(2-pyridylmethyl)-N-(6-methyl-2-pyridylmethyl)amine (pla), or N-benzyl-N,N-bis(6-methyl-2-pyridylmethyl)amine (Bn-dla). EPR spectroscopy, X-ray diffraction, and DFT calculations reveal that each of these [M(II)(cod)(N-ligand)](2+) species adopts a square-pyramidal geometry with the two cod double bonds and the two pyridine fragments in the basal plane and the N(amine) donor at the apical position. The unpaired electron of these species mainly resides at the metal center, but the apical N(amine) donor also carries a considerable fraction of the total spin density (15-18 %). Density functional calculations proved a valuable tool for the analysis and simulation of the experimental EPR spectra. Whereas the M(II)(olefin) complexes are quite stable as solids, in solution they spontaneously transform into a 1:1 mixture of M(III)(allyl) species and protonated M(I)(olefin) complexes (in the forms [M(I)(olefin)(protonated N-ligand)](2+) for M=Rh and [M(III)(H)(olefin)(N-ligand)](2+) for M=Ir). Similar reactions were observed for the related propene complex [M(II)(propene)(Me(2)tpa)](2+) (Me(2)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl)amine). The decomposition rate of the [M(II)(cod)(N-ligand)](2+) species decreases with increasing N-ligand bulk in the following order: dpa>pla>Bn-dla. Decomposition of the most hindered [M(II)(cod)(Bn-dla)](2+) complexes proceeds by a second-order process. The kinetic rate expression v=k(obs)[M(II)](2) in acetone with k(obs)=k'[H(+)][S], where [S] is the concentration of additional coordinating reagents (MeCN), is in agreement with ligand-assisted dissociation of one of the pyridine donors. Solvent coordination results in formation of more open, reactive species. Protonation of the noncoordinating pyridyl group increases the concentration of this species, and thus [H(+)] appears in the kinetic rate expression. The kinetic data are in agreement with bimolecular hydrogen-atom transfer from M(II)(cod) to another M(II) species (DeltaH( not equal)=11.5+/-2 kcal mol(-1), DeltaS( not equal)=-27+/-10 cal K(-1) mol(-1), and DeltaG( not equal)(298 K)=19.5+/-5 kcal mol(-1)).  相似文献   

14.
Triphosgene was decomposed quantitatively to phosgene by chloride ion. The reaction course was monitored by IR spectroscopy (React-IR), showing that diphosgene was an intermediate. The methanolysis of triphosgene in deuterated chloroform, monitored by proton NMR spectroscopy, gave methyl chloroformate and methyl 1,1, 1-trichloromethyl carbonate in about a 1:1 ratio, as primary products. The reaction carried out in the presence of large excess of methanol (0.3 M, 30 equiv) was a pseudo-first-order process with a k(obs) of 1.0 x 10(-)(4) s(-)(1). Under the same conditions, values of k(obs) of 0.9 x 10(-)(3) s(-)(1) and 1.7 x 10(-)(2) s(-)(1) for the methanolysis of diphosgene and phosgene, respectively, were determined. The experimental data suggest that, under these conditions, the maximum concentration of phosgene during the methanolysis of triphosgene and diphosgene was lower than 1 x 10(-)(5) M. Methyl 1,1,1-trichloromethyl carbonate was synthesized and characterized also by the APCI-MS technique.  相似文献   

15.
Hydrolysis of the dipeptides glycylserine (GlySer), leucylserine (LeuSer), histidylserine (HisSer), glycylalanine (GlyAla), and serylglycine (SerGly) was examined in oxomolybdate solutions by means of (1)H, (13)C, and (95)Mo NMR spectroscopy. In the presence of a mixture of oxomolybdates, the hydrolysis of the peptide bond in GlySer proceeded under neutral pD conditions (pD = 7.0, 60 °C) with a rate constant of k(obs) = 5.9 × 10(-6) s(-1). NMR spectra did not show evidence of the formation of paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), indicating that the cleavage of the peptide bond is purely hydrolytic. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed at pD 7.0. Comparison of the rate profile with the concentration profile of oxomolybdate species implicated monomolybdate MoO(4)(2-) as the kinetically active complex. Kinetics experiments at pD 7.0 using a fixed amount of GlySer and increasing amounts of MoO(4)(2-) allowed for calculation of the catalytic rate constant (k(2) = 9.25 × 10(-6) s(-1)) and the formation constant for the GlySer-MoO(4)(2-) complex (K(f) = 15.25 M(-1)). The origin of the hydrolytic activity of molybdate is most likely a combination of the polarization of amide oxygen in GlySer due to the binding to molybdate, followed by the intramolecular attack of the Ser hydroxyl group.  相似文献   

16.
The syntheses, physical, and photophysical properties of a family of complexes having the general formula [M2(L)(mcb)(Ru(4,4'-(X)2-bpy)2)](PF6)3 (where M = Mn(II) or Zn(II), X = CH3 or CF3, mcb is 4'-methyl-4-carboxy-2,2'-bipyridine, and L is a Schiff base macrocycle derived from 2,6-diformyl-4-methylphenol and bis(2-aminoethyl)-N-methylamine) are described. The isostructural molecules all consist of dinuclear metal cores covalently linked to a Ru(II) polypyridyl complex. Photoexcitation of [Mn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (4) in deoxygenated CH2Cl2 solution results in emission characteristic of the 3MLCT excited state of the Ru(II) chromophore but with a lifetime (tau(obs) = 5.0 +/- 0.1 ns) and radiative quantum yield (Phi(r) approximately 7 x 10(-4)) that are significantly attenuated relative to the Zn(II) model complex [Zn2(L)(mcb)(Ru((CF3)2-bpy)2)](PF6)3 (6) (tau(obs) = 730 +/- 30 ns and Phi(r) = 0.024, respectively). Quenching of the 3MLCT excited state is even more extensive in the case of [Mn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (3), whose measured lifetime (tau(obs) = 45 +/- 5 ps) is >10(4) shorter than the corresponding model complex [Zn2(L)(mcb)(Ru((CH3)2-bpy)2)](PF6)3 (5) (tau(obs) = 1.31 +/- 0.05 micros). Time-resolved absorption measurements on both Mn-containing complexes at room-temperature revealed kinetics that were independent of probe wavelength; no spectroscopic signatures for electron-transfer photoproducts were observed. Time-resolved emission data for complex 4 acquired in CH2Cl2 solution over a range of 200-300 K could be fit to an expression of the form k(nr) = k0 + A x exp{-DeltaE/kB T} with k0 = 1.065 +/- 0.05 x 10(7) s(-1), A = 3.7 +/- 0.5 x 10(10) s(-1), and DeltaE = 1230 +/- 30 cm(-1). Assuming an electron-transfer mechanism, the variable-temperature data on complex 4 would require a reorganization energy of lambda approximately 0.4-0.5 eV which is too small to be associated with charge separation in this system. This result coupled with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.  相似文献   

17.
The kinetics of the La(3+)-catalyzed methanolysis of N-phenyl-beta-lactam (2) and N-p-nitrophenyl-beta-lactam (3) as well as that of nitrocefin (1) were studied at 25 degrees C under buffered conditions. In the case of 2 and 3, the observed second-order rate constants (k(2)(obs)) for catalysis plateau at pH 7.5-7.8, reaching values of 1 x 10(-)(2) and 35 x 10(-)(2) M(-)(1) s(-)(1) respectively. Potentiometric titrations of solutions of 2 x 10(-)(3) M La(OTf)(3) were analyzed in terms of a dimer model (La(3+)(2)((-)OCH(3))(n)()), where the number of methoxides varies from 1 to 5. The species responsible for catalysis in the pH range investigated contain 1-3 methoxides, the one having the highest catalytic activity being La(3+)(2)((-)OCH(3))(2), which comprises 80% of the total La(3+) forms present at its pH maximum of 8.9. The catalysis afforded by the La(3+) dimers at a neutral pH is impressive relative to the methoxide reactions: at pH 8.4 a 1 mM solution of catalyst (generated from 2 mM La(OTf)(3)) accelerated the methanolysis of 2 by approximately 2 x 10(7)-fold and 3 by approximately 5 x 10(5)-fold. As a function of metal ion concentration, the La(3+)-catalyzed methanolysis of 1 proceeds by pathways involving first one bound metal ion and then a second La(3+) leading to a plateau in the k(obs) vs [La(3+)](total) plots at all pH values. The k(max)(obs) pseudo-first-order rate constants at the plateaus, representing the spontaneous methanolysis of La(3+)(2)(1(-)) forms, has a linear dependence on [(-)OCH(3)] (slope = 0.84 +/- 0.05 if all pH values are used and 1.02 +/- 0.03 if all but the two highest pH values are used). The speciation of bound 1 at a La(3+) concentrations corresponding to that of the onset of the kinetic plateau region was approximated through potentiometric titration of the nonreactive 3,5-dinitrobenzoic acid in the presence of 2 equiv of La(OTf)(3). A total speciation diagram for all bound forms of La(3+)(2)(1(-))((-)OCH(3))(n)(), where n = 0-5, was constructed and used to determine their kinetic contributions to the overall pH vs k(max)(obs) plot under kinetic conditions. Two kinetically equivalent mechanisms were analyzed: methoxide attack on La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 0-2; unimolecular decomposition of the forms La(3+)(2)(1(-))((-)OCH(3))(n)(), n = 1-3.  相似文献   

18.
The unusual linear trinuclear complex [Mo3O4(TPP)3]+ is formed in solution upon the reaction of [MoO(TPP)-(OClO3)] with [[MoO(TPP)]2O], and an equilibrium between [Mo3O4(TPP)3]+ and its constituent species is rapidly established. Spectrophotometric experiments suggest that [Mo3O4(TPP)3]+ is the predominant species found in solutions resulting from the mixture of [MoO(TPP)(OClO3)] and [[MoO(TPP)]2O], and its formation is strongly favored (log K = 5.5 +/- 0.5 M-1). No evidence of higher oligomers has been observed. A mechanism for the formation of [Mo3O4(TPP)3]+ by the controlled hydrolysis of [MoO(TPP)(OClO3)] is proposed.  相似文献   

19.
Sulfoxidation of thioanisoles by a non-heme iron(IV)-oxo complex, [(N4Py)Fe(IV)(O)](2+) (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), was remarkably enhanced by perchloric acid (70% HClO(4)). The observed second-order rate constant (k(obs)) of sulfoxidation of thioaniosoles by [(N4Py)Fe(IV)(O)](2+) increases linearly with increasing concentration of HClO(4) (70%) in acetonitrile (MeCN)at 298 K. In contrast to sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+), the observed second-order rate constant (k(et)) of electron transfer from one-electron reductants such as [Fe(II)(Me(2)bpy)(3)](2+) (Me(2)bpy = 4,4-dimehtyl-2,2'-bipyridine) to [(N4Py)Fe(IV)(O)](2+) increases with increasing concentration of HClO(4), exhibiting second-order dependence on HClO(4) concentration. This indicates that the proton-coupled electron transfer (PCET) involves two protons associated with electron transfer from [Fe(II)(Me(2)bpy)(3)](2+) to [(N4Py)Fe(IV)(O)](2+) to yield [Fe(III)(Me(2)bpy)(3)](3+) and [(N4Py)Fe(III)(OH(2))](3+). The one-electron reduction potential (E(red)) of [(N4Py)Fe(IV)(O)](2+) in the presence of 10 mM HClO(4) (70%) in MeCN is determined to be 1.43 V vs SCE. A plot of E(red) vs log[HClO(4)] also indicates involvement of two protons in the PCET reduction of [(N4Py)Fe(IV)(O)](2+). The PCET driving force dependence of log k(et) is fitted in light of the Marcus theory of outer-sphere electron transfer to afford the reorganization of PCET (λ = 2.74 eV). The comparison of the k(obs) values of acid-promoted sulfoxidation of thioanisoles by [(N4Py)Fe(IV)(O)](2+) with the k(et) values of PCET from one-electron reductants to [(N4Py)Fe(IV)(O)](2+) at the same PCET driving force reveals that the acid-promoted sulfoxidation proceeds by one-step oxygen atom transfer from [(N4Py)Fe(IV)(O)](2+) to thioanisoles rather than outer-sphere PCET.  相似文献   

20.
()()Conventional (18)O isotopic labeling techniques have been used to measure the water exchange rates on the Rh(III) hydrolytic dimer [(H(2)O)(4)Rh(&mgr;-OH)(2)Rh(H(2)O)(4)](4+) at I = 1.0 M for 0.08 < [H(+)] < 0.8 M and temperatures between 308.1 and 323.1 K. Two distinct pathways of water exchange into the bulk solvent were observed (k(fast) and k(slow)) which are proposed to correspond to exchange of coordinated water at positions cis and trans to bridging hydroxide groups. This proposal is supported by (17)O NMR measurements which clearly showed that the two types of water ligands exchange at different rates and that the rates of exchange matched those from the (18)O labeling data. No evidence was found for the exchange of label in the bridging OH groups in either experiment. This contrasts with findings for the Cr(III) dimer. The dependence of both k(fast) and k(slow) on [H(+)] satisfied the expression k(obs) = (k(O)[H(+)](tot) +k(OH)K(a1))/([H(+)](tot) + K(a1)) which allows for the involvement of fully protonated and monodeprotonated Rh(III) dimer. The following rates and activation parameters were determined at 298 K. (i) For fully protonated dimer: k(fast) = 1.26 x 10(-)(6) s(-)(1) (DeltaH() = 119 +/- 4 kJ mol(-)(1) and DeltaS() = 41 +/- 12 J K(-)(1) mol(-)(1)) and k(slow) = 4.86 x 10(-)(7) s(-)(1) (DeltaH() = 64 +/- 9 kJ mol(-)(1) and DeltaS() = -150 +/- 30 J K(-)(1) mol(-)(1)). (ii) For monodeprotonated dimer: k(fast) = 3.44 x 10(-)(6) s(-)(1) (DeltaH() = 146 +/- 4 kJ mol(-)(1) and DeltaS() = 140 +/- 11 J K(-)(1) mol(-)(1)) and k(slow) = 2.68 x 10(-)(6) s(-)(1) (DeltaH() = 102 +/- 3 kJ mol(-)(1) and DeltaS() = -9 +/- 11 J K(-)(1) mol(-)(1)). Deprotonation of the Rh(III) dimer was found to labilize the primary coordination sphere of the metal ions and thus increase the rate of water exchange at positions cis and trans to bridging hydroxides but not to the same extent as for the Cr(III) dimer. Activation parameters and mechanisms for ligand substitution processes on the Rh(III) dimer are discussed and compared to those for other trivalent metal ions and in particular the Cr(III) dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号