首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of radical polymerization of phenyl, ortho-chlorophenyl, and para-chlorophenyl acrylates, as well as their copolymerization with methyl methacrylate, have been studied dilatometrically. The results obtained indicate that the overall rate of polymerization is affected by the flexibility of the growing radicals. However, the copolymerization of these monomers with methyl methacrylate gives overall rates rather similar for all three systems, being fundamentally regulated by the formation of reversible π complexes between the donor aromatic rings and the acceptor methacrylic double bonds. Dilatometric methods for the study of the copolymerization reactions have been tested and the corresponding binary bonding frequencies Bij and conversion factors Kij have been calculated for the copolymerization of ortho- and para-chlorophenyl acrylates with methyl methacrylate.  相似文献   

2.
Mechanisms of radical copolymerization of di-n-butylstannyl dimethacrylate with maleic anhydride in the presence of 2,2-asobisisobutyronitrile are discussed. Complexing (Keq) and copolymerization (r1 and r2) constants have been determined. Quantitative contributions of cyclization and complexing to reactivity ratios of the monomers under study and to propagation reactions have been estimated. The copolymerization has been found to proceed predominantly at the complex radical cyclocopolymerization step, leading to cyclized and linear unsaturated units in the macromolecule chain.  相似文献   

3.
Boys and Handy [1] have discussed the solution of the bivariational equations with restricted numerical integration. One of the weaknesses of the method was that in the numerical summations over points, some points arose with r ij= 0 and non-zero weights. This makes the method quite impractical for the Schrodinger Hamiltonian (because of the singularity at r ij= 0), and it cannot be advantageous for the transcorrelated Hamiltonian C–1HC because there will be some discontinuous higher derivatives at r ij=0. Here it is shown how the symmetry of cylindrically symmetric molecules can be used to eliminate such points, without losing any of the advantages of the overall method, such as the convergence of the eigensolutions. It is also shown how the primary numerical integration points (z i, ri) may be chosen in any calculation such that each is associated with an equal amount of one-electron density. The choice of the angular coordinates are governed by the removal of the r ij=0 points and maintaining the natural orthogonality between orbitals of different symmetry types. The method has been programmed and found to be practical, although no new molecular calculations have yet been performed. It is to be hoped that these points will give a basis for new transcorrelated calculations on diatomic molecules.This paper was presented during the session on numerical integration methods for molecules of the 1970 Quantum Theory Conference in Nottingham. It has been revised in the light of the interesting discussion which followed.  相似文献   

4.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

5.
Cross-termination rate constants in the copolymerization of some methacrylates with styrene were determined. The rate constants obtained decrease with increasing r1 and increase with decreasing r2. The relationship between the cross-termination and propagation rate constants was discussed on theoretical and experimental bases.  相似文献   

6.
The copolymerization reactivity ratios designated as ri = kii/kij are characteristic of thermodynamic conditions, such as temperature, pressure, and concentration, in which the temperature dependence has been demonstrated by kinetic procedures [14]. It is noted that in radical copolymerization the simple product of the reactivity ratios, e.g., r1, r2 generally tends to move toward unity with increasing temperature [2] and that for ionic copolymerization it is usually close to unity [5]. Such an inclination, however, involves some ambiguity in evaluating all the reported data [6] concerning the polymerization conditions.  相似文献   

7.
8.
The rate of solution copolymerization of styrene (M1) and 2-hydroxyethyl methacrylate (M2) was investigated by dilatometry. N,N-dimethyl formamide, toluene, isopropyl alcohol, and butyl alcohol were used as solvents. Polymerization was initiated by α,α′-azobisisobutyronitrile at 60°C. The initial copolymerization rate increased nonlinearly with increasing 2-hydroxyethyl methacrylate (HEMA)/styrene ratio. The copolymerization rate was promoted by solvents containing hydroxyl groups. Two different approaches were used for the prediction of copolymerization rates. The relationships proposed for the copolymerization rates calculation involve the effects of the total monomer concentration, mole fraction of HEMA, and of the solvent type. Different reactivity ratios were found in polar and nonpolar solvents: r1 = 0.53, r2 = 0.59 in N,N-dimethyl formamide, isopropyl alcohol and n-butyl alcohol; r1 = 0.50, r2 = 1.65 in toluene. The usability of these reactivity ratios was confirmed by batch experiments.  相似文献   

9.
In this work, a computer search with molecular mechanics calculations is applied to determine the possible low-energy configurations of two adjacent molecules, CAP18106–137 and lipid A. This computer search is performed by systematically searching the five degrees of freedom that define the relative orientations of the two adjacent molecules. Hydrophilic and hydrophobic units are separated into several small domains along the CAP18106–137 molecule so that it can interact with the lipid A either through the Coulombic interactions with the diphosphoryl head group or through the hydrophobic interactions with the fatty acyl chains. The intermolecular interactions are calculated through the van der Waals and Coulombic interactions. The Coulombic interactions are calculated by using a dielectric constant either with a value of unity ϵ = 1 or with a distance-dependent dielectric function ϵ(r) = rij. Based on the 400 lowest searched configurations, the intermolecular interactions calculated with ϵ = 1 are found to be about sevenfold lower than those calculated with ϵ(r) = rij. Based on the inspection of the sixteen snapshots of molecular associations, the hydrophobic interactions calculated with ϵ(r) = rij are more favorable than those calculated with ϵ = 1. The high population of the lipid A binding to the CAP 18106–137 molecule is located within the first 19 residues near the N-terminus of the peptide, as calculated either with e = 1 or with ϵ(r) = rij, by observing the diphosphoryl groups of the lipid A. The orientations of the lipid A with respect to the CAP18106–137 molecule complete an angle of 260°, which appose to the positively charged residues in the N-terminal half by using the helical wheel projection of the peptide.  相似文献   

10.
The study of copolymerization of styrene with small amounts (≤0.04 wt %) of divinylbenzenes (DVB) offers advantages over similar studies made at high DVB concentrations. A simple set of equations can be used to describe the kinetics of copolymerization at low DVB concentrations. Experimental data show that the copolymerization constants (r2) for the copolymerization of the first double bonds of m- and p-DVB (monomer 1) with styrene (monomer 2) are 0.85 and 0.43, respectively. In contrast to findings at higher DVB concentrations these constants do not change during the first half of the polymerization. After 50% conversion an autoacceleration effect reduces the selectivity of the growing polystyrene radical. The copolymerization constants for the second double bonds of m- and p-DVB during the first half of the polymerization are estimated as 1.  相似文献   

11.
The free-radical copolymerization of styrene and methacrylonitrile was studied in toluene solution at 60, 90, and 120°C. Copolymer composition was estimated from gas-chromatographic measurement of unreacted monomer concentrations. Reactions were carried to about 20% conversion to minimize analytical errors. Reactivity ratios were calculated by using an integrated form of the Mayo-Lewis simple copolymerization equation. Reactivity ratios were not sensitive to reaction temperature. The values at 90°C are r1 = 0.41 (methacrylonitrile) and r2 = 0.37 (styrene). The r1 values are higher than those reported by other workers, presumably because of advantages in the present analytical technique and calculation method. The negligible temperature dependence of reactivity ratios is in accord with theory. If monomer pairs exhibit pronounced dependence of reactivity ratios on polymerization temperature, this may indicate a change in mode of placement of units in the polymer chain.  相似文献   

12.
Radiation-induced copolymerization of tetrafluoroethylene with various vinyl ethers has been studied. It was found that tetrafluoroethylene can be copolymerized with vinyl ethers to give alternating copolymers over a wide range of the initial monomer concentration in the monomer mixture. The monomer reactivity ratios were determined for the copolymerization of tetrafluoroethylene with n-butyl vinyl ether as 0.005 (rTFE) and 0.0015 (rNBVE). The rate of copolymerization is extremely high and has a maximum at an equimolar concentration of two monomers. The alternating structure of the copolymers was confirmed by the analysis of NMR spectra. Some thermal properties of the copolymers were measured by DSC and DTA.  相似文献   

13.
The radical copolymerization of N-(2,6-dimethylphenyl)maleimide (DMPhMI) and 2,4,4-trimethylpentene (TP) was investigated in several solvents at 60°C. The copolymerization rate and the molecular weight of the resulting copolymers were dependent on the kind of solvent used. It was also revealed that the monomer reactivity ratios depended on the solvent; r1 = 0.086 and r2 = 0 in chloroform and r1 = 0.25 and r2 = 0 in benzene, where DMPhMI and TP are M1 and M2, respectively. The propagation rate constants were determined for the homopolymerization and copolymerization in chloroform and benzene using electron spin resonance spectroscopy. The homo- and crosspropagation rate constants (k11 and k12, respectively) were revealed to depend on the solvent: k11 is 20 and 37 L/mol·s and k12 is 230 and 150 L/mol·s in chloroform and in benzene, respectively. The interaction between the maleimide moiety and the solvent molecules was discussed based on the acceptivity of the solvents. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1515–1525, 1997  相似文献   

14.
The copolymerization of 3,4-dimethyltetrahydrofuran with selected cyclic ethers was studied. Although 3,4-dimethyltetrahydrofuran did not homopolymerize, it readily copolymerized with propylene oxide and epichlorohydrin in an alternating fashion using the cationic initiator PF5. The reactivity ratios r1 and r2 for the copolymerization of 3, 4-dimethyltetrahydrofuran and epichlorohydrin were r1 = 0.22 ± 0.05 and r2 = 0.11 ± 0.01, respectively.  相似文献   

15.
16.
The copolymerization of p-tert-butoxystyrene (TBOSt) (M1) and di-n-butyl maleate (DBM) (M2) with dimethyl 2,2′-azobisisobutyrate (MAIB) in benzene at 60°C was studied kinetically and by means of ESR spectroscopy. The monomer reactivity ratios were determined to be r1 = 2.3 and r2 = 0 by a curve-fitting method. The copolymerization system was found to involve ESR-observable propagating polymer radicals under practical copolymerization conditions. The apparent rate constants of propagation (kp) and termination (kt) at different feed compositions were determined by ESR. From the relationship of kp and f1 (f1 = [M1]/([M1] + [M2])) based on a penultimate model, the rate constants of five propagations of copolymerization were evaluated as follows; k111 = 140 L/mol s, k211 = 3.5 L/mol s, k112 = 61 L/mol s, k212 = 1.5 L/mol s, and k121 = 69 L/mol s. Thus, a pronounced penultimate effect was predicted in the copolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1449–1455, 1998  相似文献   

17.
The sequence distributions of monomer units in a series of high-pressure, bulk ethylene–vinyl chloride copolymers have been determined by high-resolution NMR spectroscopy. The concentrations of EE, VV, and EV (VE) monomer pairs or diads were used with NMR-determined compositions to calculate, in addition to the sequence distribution parameters, the reactivity ratio product for the system. Inclusion of feed data allowed the calculation of individual reactivity ratios. Well within experimental error, the reactivity ratio product (r1r2 = 0.7) determined from microstructure analysis—independent of monomer feed data—was equal to that determined by the standard Fineman-Ross technique. Terminal monomer unit effects on the copolymerization were observed. The nonrandom structures result from a copolymerization described by first-order Markoffian statistics.  相似文献   

18.
The radical copolymerization of diallyl tartrate (DATa) (M1) with diallyl succinate (DASu), diallyl phthalate (DAP), allyl benzoate (ABz), vinyl acetate (VAc), or styrene (St) was investigated in order to disclose in more detail the characteristic hydroxyl group's effect observed in the homopolymerization of DATa. In the copolymerization with DASu or DAP as a typical diallyldicarboxylate, the dependence of the rate of copolymerization on monomer composition was different for different copolymerization systems and unusual values larger than unity for the product of monomer reactivity ratios, r1r2, were obtained. In the copolymerization with ABz or VAc (M2), the r1 and r2 values were estimated to be 1.50 and 0.64 for the DATa/ABz system and 0.76 and 2.34 for the DATa/VAc system, respectively; the product r1r2 for the latter copolymerization system was found again to be larger than unity. In the copolymerization with St, the largest effect due to DATa monomer of high polarity was observed. Solvent effects were tentatively examined to improve the copolymerizability of DATa. These results are discussed in terms of hydrogen-bonding ability of DATa.  相似文献   

19.
The carbocationic copolymerization of isobutylene (IB) and styrene (St) was investigated using real time FTIR monitoring. Depending on the concentration of the individual monomers, and their ratio in the feed, initial rapid monomer consumption was observed. Instantaneous reactivity ratios (rIB(inst) and rSt(inst)) obtained from apparent rate constants of monomer consumption strongly depended on concentration.  相似文献   

20.
The copolymerization of 1,6-anhydro-2,3,4-tri-O-(p-methyl-benzyl)-β-D -glucopyrnose [TXGL, M1] with 1,6-anhydro-2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-D -glucopyranosyl)-β-D -glucopyranose [HBMA, M2] has been studied as a method of producing dextrans of controlled composition with a linear backbone and randomly distributed single glucose units as side chains. Copolymers of intrinsic viscosities ranging from 0.51 to 0.05 dl/g are produced. The copolymerization appears to follow classical copolymerization theory but is affected adversely by the low reactivity of the maltose derivative. Reactivity ratios have been calculated for runs catalyzed by 10 mole-% and 20 mole-% phosphorus pentafluoride (PF5): r1 = 1.91 ± 0.35, r2 = 0.28 ± 0.25 and r1 = 2.21 ± 0.15, r2 = 0.21 ± 0.10, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号