首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graft copolymerization of acceptor monomers MA and MMA onto Himachali wool fiber in an aqueous medium was studied by using Mn(acac)s as initiator. Nitric acid was found to catalyze the graft copolymerization. Percentage of grafting and percent efficiency have been determined as functions of the concentration of chelate, nitric acid, monomer, time, and temperature, Under optimum conditions, MMA produced a maximum grafting of 82.5% while MA afforded maximum grafting to the extent of 27.5%. Relative reactivities of MA and MMA toward grafting have been compared with those of EA, BA, and VAc reported earlier from this laboratory. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of Mn(acac)3: MMA > EA > BA > MA > VAc. An attempt has been made to explain the observed reactivity pattern shown by different vinyl monomers in graft copolymerization reactions.  相似文献   

2.
In order to initiate a comprehensive study of graft copolymerization of vinyl monomers onto soluble protein-gelatin, we have studied grafting of ethyl acrylate (EA) and methyl methacrylate (MMA) onto gelatin using eerie ammonium nitrate (CAN) and eerie ammonium sulfate (CAS) as the redox initiator in an aqueous medium. A small amount of mineral acid (HNO3 with CAN and H2SO4 with CAS) was found to catalyze the graft copolymerization. Graft copolymerization reactions were carried out at different temperatures. Maximum grafting occurred at 65°C both with EA and MMA. Percentage grafting has been determined as function of 1) concentration of monomer (EA and MMA), 2) concentration of initiator (CAN and CAS), 3) concentration of acid (HNO3 and H2SO4), 4) time, and 5) temperature.  相似文献   

3.
Methyl methacrylate (MMA), methyl acrylate (MA), and ethyl acrylate (EA) have been graft copolymerized onto wool fiber in aqueous medium using the chromium acetylacetonate-tertiary-butyl hydroperoxide (Cr(acac)3-TBHP) system as initiator. The percentage of grafting has been determined as a function of the concentrations of monomer, chelate, and TBHP, and the time and temperature under optimum conditions. MMA produced a maximum grafting of 119.8%, MA produced a maximum grafting of 56%, while EA afforded maximum grafting to the extent of 41.9%. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of the Cr(acac)3-TBHP system: MMA > MA > EA.  相似文献   

4.
Several monomers (i.e., acrylonitrile (ACN), ethyl acrylate (EtA), acrylate of 2 ethylhexyl (EHA), butyl acrylate (BuA), vinyl acetate (VAc), methyl methacrylate (MMA) and styrene (St)) were investigated in order to study their capacities to form microemulsions. The surfactant was nonyl phenol ethoxylate with 25 moles ethylene oxide and ethanol was used as the cosurfactant. The phase diagrams prove that the capacity for microemulsion formation varies in the following sequence: ACN = EtA > VAc > BuA > MMA > St > EHA. Conductometric and refractometric studies allowed us to evidence the formation of microemulsions with W/O, bicontinuous or O/W structure. Fluorescence studies give interesting informations on the stabilization capacity of the monomers dispersed by interaction with hydrophobic chain of the cosurfactant. H-NMR studies suggest that the monomers in microemulsions lie in regions with various polarities as function of their chemical nature. In polymerization initiated with benzoyl peroxide the minimum conversions were obtained in zones of composition where the initial microemulsions possess a bicontinuous microstructure. The reactions of degradative transfer of the increasing macroradicals account for these conversion modifications. For initiation with ammonium persulphate, its rate of decomposition depends on its ability to displace the proton bonded to the substituted vinylic carbon of the monomer. The productivity of this initiator varies within the sequence MMA > EtA > BuA > St > ACN > VAc. The consumption of the initiator, as induced by the monomer, depends on its chemical nature and on the solubilization site of the microemulsions.  相似文献   

5.
The surface of poly (ethylene-co-tetrafluoroethylene) (PETFE) strip was grafted by acrylic acid (AAc) and methyl methacrylate (MMA) onto PETFE skeleton to improve the blood compatibility and reduce thrombogenicity for prosthesis. The grafting process was carried out via γ-rays technique as initiator for addition reaction. The optimal conditions were achieved by investigating the effect of different parameters during the grafting process such as exposure to irradiation dose, comonomer concentration, comonomer composition, and solvent. The surface microstructure and composition of copoly (AAc/MMA)-grafted-PETFE surface were characterized by Fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyzer, scanning electron microscopy (SEM), and electron spectroscopy for chemical analysis (ESCA). Further, heparin was introduced onto the grafted PETFE strip surface. The blood compatibility of modified strip was investigated by the determination of platelet adhesion and thrombus formation. The results indicate that the heparinized copoly (AAc/MMA)-grafted-PETFE sample is a good candidate for manufacturing the prosthetic cardiac valves.  相似文献   

6.
In order to ascertain the effect of a donor monomer, vinyl acetate (VAc), on the graft copolymerization of acceptor monomers, ethyl acrylate (EA) and butyl acrylate (BA), grafting of mixed vinyl monomers (EA + VAc) and (BA + VAc) was carried out on Himachali wool in aqueous medium using ceric ammonium nitrate (CAN) as a redox initiator. Graft copolymerization was carried out at different temperatures for various reaction periods. Percent grafting and percent efficiency were determined as functions of 1) concentration of mixed vinyl monomers, 2) concentration of CAN, 3) concentration of HNO3 4) temperature, and 5) reaction time. VAc, the donor monomer, was found to decrease percent grafting of EA and BA onto wool.  相似文献   

7.
Graft copolymers of 2-(dimethylamino)ethylmethacrylate (DMAEMA) and acrylic acid (AAc) onto polypropylene films were investigated for obtaining a pH- and thermo-sensitive material. DMAEMA and AAc were grafted by direct irradiation and pre-irradiation methods, respectively, using a 60Co γ-source. Due to the acidic and basic nature of the monomers, this novel copolymer corresponds to the class of polyzwitterions. Their behavior was studied in presence of different buffer solutions from pH 2 to 12 for different grafting percentages (from 9 to 362%) of AAc and keeping the DMAEMA grafting percentage constant. These modified films showed the same critical pH point at 7.6 in a range of temperatures from 23 to 37 °C. The swelling percentage showed a dependence on AAc content and pH. The lower critical solution temperature was observed at 36 °C when AAc content was less than 30% of grafting. The grafted films were characterized by swelling behavior, FTIR-ATR and UV–Vis spectrometry for study of loading and release of vancomycin as a model drug at room temperature.  相似文献   

8.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

9.
Methyl methacrylate (MMA) and vinyl acetate (VAc) were grafted onto corn starch with manganic pyrophosphate { [Mn(H2P2O7)3]^3- } as the initiator and water as the reaction medium, The influences of reaction conditions, including pH value, initiator concentration, monomer concentration and its composition, on percent grafting and grafting efficiency were investigated. The graft copolymer was characterized by means of IR spectroscopy, scanning electron micrograph(SEM) and ^1H NMR spectroscopy. The biodegradation experiment showed that the degradation of corn starch-g-poly(MMA-co-VAc) was mainly from starch. However,after poly VAc in the side chain was transformed into poly vinyl alcohol(PVA), both starch and the grafted side chain could be degraded completely.  相似文献   

10.
Abstract

Postpolymerization of vinyl monomers initiated by pendant peroxycarbonate groups of grafted polymer chains on carbon black (CB) was investigated. The grafting of polymers having pendant peroxycarbonate groups onto CB was achieved by the trapping of polymer radicals formed by the thermal decomposition of copolymers of t-butylperoxy-2-methacryloyloxyethyl-carbonate (HEPO) with vinyl monomers such as vinyl acetate (VAc), styrene (St) and methyl methacrylate (MMA). The copolymers having pendant peroxycarbonate groups were prepared by copolym-erization of HEPO with vinyl monomers using azo initiator under irradiation of UV light at room temperature. The amount of remaining pendant peroxycarbonate groups of the poly(VAc-co-HEPO)-grafted CB obtained from the reaction at 90°C was maximum and decreased above the temperature. Furthermore, the postpolymerization of vinyl monomers, such as St, MMA, and VAc was initiated in the presence of poly(VAc-co-HEPO)-grafted and poly(St-co-HEPO)-grafted CB and the corresponding polymers were postgrafted onto CB to give branched polymer-grafted CB. The percentage of poly(St)-postgrafting (proportion of post-grafted poly(St) to poly(MMA-co-HEPO)-grafted CB used) increased with increasing polymerization time, but became constant at 20% after 4 hours.  相似文献   

11.
Graft copolymerization of methyl methacrylate (MMA) onto Himachali wool fiber has been investigated in aqueous medium by using γ irradiation from a 2100 Ci60CO source as means of initiation. Graft copolymerization was carried out by the mutual method in nitrogen atmosphere as well as in air. Effect of mineral acids and acetic acid on percentage of grafting was studied. Percentage of grafting was determined as functions of total dose, concentration of monomer, and concentration of acids. Maximum percentage of grafting in the presence of acids occurred in nitrogen atmosphere at a total dose of 1.05 MR. All the acids were found to influence grafting and the reactivity of different acids towards graft copolymerization was found to follow the order: H2SO4 > HCl > HNO3 > HC1O4 > HOAc. An attempt has been made to explain the reactivity order of different acids in the light of the mechanism proposed for γ-irradiation-induced graft copolymerization of vinyl monomer onto wool fiber.  相似文献   

12.
After one atmospheric pressure plasma treatment of poly(ethylene terephthalate) (PET) film, acrylic acid (AAc) in aqueous solution was successfully graft‐copolymerized onto PET films. The effects of reaction time, AAc monomer concentration and reaction temperature on grafting behavior of AAc were systematically studied. Possible reaction kinetics of plasma‐induced graft copolymerization, starting from initial hydroperoxide decomposition, were proposed. Through the Arrhenius analysis about graft copolymerization kinetics of AAc monomers on PET surface, it was revealed that the activation energies of decomposition, propagation and termination were 98.4, 63.5, and 17.5 kJ/mol, respectively. The temperature around 80 °C was favorable not only for the formation of oxide radicals through the thermal decomposition of hydroperoxide on PET surface but also for the extension of graft copolymer chain through direct polymer grafting. Poly(acrylic acid) (PAAc) grains grafted onto PET surfaces possessed relatively uniform size and both PAAc grain size and surface roughness increased with increasing the grafting degree of AAc. The increase of grain size with increasing grafting degree results from the possibility of forming long chain graft copolymers and their shielding of reactive sites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1594–1601, 2008  相似文献   

13.
The grafting of poly(methyl methacrylate) (PMMA) onto biosynthesized γ-poly(glutamic acid) (γ-PGA) initiated by pendant azo groups introduced onto γ-PGA was performed. The introduction of pendant azo groups onto γ-PGA was achieved by the reaction of carboxyl groups of γ-PGA with azo initiators having hydroxyl or amino groups, such as 2,2-azobis[2-(hydroxymethyl)propionitrile] (AHP), 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (AMHP), and 2,2′-azobis[2-(2-imidazolin-2-yl)propane] (AIP), using N,N′-dicyclohexylcarbodiimide. The amount of pendant AHP groups introduced onto γ-PGA was estimated to be 0.15 mmol/g. Untreated γ-PGA failed to initiate the polymerization of MMA. On the contrary, the polymerization of MMA was found to be initiated in the presence of γ-PGA having azo groups: the polymerization rate was proportional to the square root of the concentration of γ-PGA having pendant azo groups. During the polymerization PMMA was grafted onto γ-PGA; the percentage of grafting of PMMA onto γ-PGA obtained from the graft polymerization initiated by pendant AHP, AMHP, and AIP groups was evaluated to be 65.0, 53.1, and 29.0%, respectively. Differential scanning calorimetric analysis shows that the endotherm transition point of γ-PGA at 220°C disappears by the grafting of PMMA onto the polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
A novel redox system, potassium ditelluratocuprate(III) (DTC)–chitosan, was employed to initiate the graft copolymerization of methyl methacrylate (MMA) onto chitosan in alkali medium. The effects of reaction variables, such as the initiator concentration, ratio of monomer to chitosan, the pH value, as well as reaction temperature and time were investigated, and the grafting conditions were optimized. Graft copolymers with both high grafting efficiency (>90%) and percentage of grafting were obtained, and the rate of polymerization is higher, which indicated that the DTC–chitosan redox system is an efficient initiator for this graft copolymerization. The structures and the thermal property of chitosan and chitosan–g–PMMA were characterized by infrared spectroscopy (IR), X‐ray diffraction and thermogravimetric analysis (TGA). A mechanism is proposed to explain the generation of radicals and the initiation. The graft copolymer was used as the compatibilizer in blends of terpolyamide and chitosan. The scanning electron microscope (SEM) photographs indicated that the graft copolymer improved the compatibility of the blend.  相似文献   

15.
A new monomer, maleimidoethanoyl‐5‐fluorouracil (MIEFU), was synthesized by the reaction of maleimidoethanoyl chloride and 5‐fluorouracil (5‐FU). The homopolymer of MIEFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerizations with 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C for 48 h. The structures of the synthesized monomer and polymers were identified by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies and elemental analysis. The contents of the MIEFU units in poly(MIEFU‐co‐AA) and poly(MIEFU‐co‐VAc) were 18 and 30 mol %, respectively. The number‐average molecular weights of the synthesized polymers, as determined by gel permeation chromatography, ranged from 4900 to 9800. The in vitro cytotoxicities of the samples against mouse mammary carcinoma (FM3A), mouse leukemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the following order: 5‐FU ≥ MIEFU > poly(MIEFU) > poly(MIEFU‐co‐AA) > poly(MIEFU‐co‐VAc). The in vivo antitumor activities of the polymers against Balb/C mice bearing the sarcoma 180 tumor cells were greater than those of 5‐FU at all the doses tested. The inhibitions of the SV40 DNA replication of the samples were much greater than that of the control. The synthesized monomer and polymers showed more antiangiogenesis activity than the control. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1247–1256, 2000  相似文献   

16.
Abstract

Graft copolymerization of methyl methacrylate onto nylon 6 was investigated in aqueous perchloric acid medium using thallium(III) ions as initiator. The rate of grafting was evaluated by varying the concentrations of monomer, initiator, acid, and temperature. The rate of grafting was found to increase with an increase of both monomer and initiator concentrations. The graft yield was found to increase with an increase in the acid concentration up to 0.49 mL?1, and beyond this concentration of perchloric acid the graft yield was found to decrease. It also increased with an increase of temperature. From the Arrhenius plot the overall activation energy was found to be 3.9 kcal/mol. The effects of inhibitors, various solvents, inorganic salts, and swelling agents on graft yield were studied. A suitable kinetic scheme has been proposed and a rate equation has been derived.  相似文献   

17.
Graft copolymerization of vinyl acetate (VAc) onto cellulose has been studied in an aqueous medium in the presence of Fe(acac)3, Al(acac)3, and Zn(acac)2 as initiators. Percentage of grafting has been determined as a function of concentration of initiators and monomer, reaction time, and temperature. The reactivities of different metal chelates toward grafting of VAc on cellulose have been determined and were found to follow the order: Zn(acac)2 > Al(acac)3 > Fe(acac)3. A plausible mechanism for grafting involving complex formation between metal chelates and vinyl monomer has been suggested. Several grafting experiments were carried out in presence of CCl4, CHCl3, CH3CH2CH2SH and Et3N. All these additives with the exception of Et3N were found to suppress grafting.  相似文献   

18.

The graft copolymerization of methyl methacrylate (MMA) onto commercial acrylic fibers (PAN) has been studied using Azobis(isobutyro)nitrile (AIBN) as an initiator. MMA grafting initiated by radicals formed from thermal decomposition of AIBN. In this study, the effects of monomer and initiator concentration, time and temperature reaction on the grafting yield have been investigated.

The optimum conditions for this grafting reaction were obtained with an MMA concentration of 0.7 M, an AIBN concentration of 0.0073 M, a reaction temperature of T=85°C and with a 60 min reaction time.

The fiber structure has been investigated by different experimental techniques of characterization such as Fourier transform infrared spectroscopy (FT‐IR), calorimetric analysis (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water absorption and the physical and mechanical properties has also been investigated in this study. The thermal analysis data showed that by increasing grafting yield, little changes have occurred in fibers samples up to 13.5% of grafting yield and the thermal transitions of grafted fibers have approximately the same behavior compared with the raw fibers sample. Grafting also slightly affected the fiber morphology. The experimental data of mechanical properties clearly show that by increasing grafting yield, max extension will decrease but this change up to 13.5% grafting yield is barely noticeable. Grafting of poly MMA improved water absorption.  相似文献   

19.
Using potassium diperiodatonickelate (Ni (IV)) as an efficient initiator, the graft copolymerization of methyl acrylate (MA) onto organophilic montmorillonite (OMMT) was successfully performed in an alkaline medium. Three grafting parameters were systematically evaluated as functions of the temperature, the initiator concentration, reaction time, pH value, and the ratio of MA to OMMT substrate. The structure of the titled graft copolymers (OMMT‐g‐PMA) were confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and thermo‐gravimetric analysis (TGA). It was found that Ni (IV) was a highly efficient initiator for graft copolymerization of the MA onto OMMT, i.e., grafting efficiency is as high as 95% and grafting percentage can be facilely controlled within 700% in this study. In addition, the highest grafting efficiency and grafting percentage were obtained when temperature adopted was over 40°C and pH was about 10.3. A single‐electron‐transfer mechanism was proposed to illustrate the formation of radicals and the initiation reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号