首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Graft copolymerization of acceptor monomers MA and MMA onto Himachali wool fiber in an aqueous medium was studied by using Mn(acac)s as initiator. Nitric acid was found to catalyze the graft copolymerization. Percentage of grafting and percent efficiency have been determined as functions of the concentration of chelate, nitric acid, monomer, time, and temperature, Under optimum conditions, MMA produced a maximum grafting of 82.5% while MA afforded maximum grafting to the extent of 27.5%. Relative reactivities of MA and MMA toward grafting have been compared with those of EA, BA, and VAc reported earlier from this laboratory. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of Mn(acac)3: MMA > EA > BA > MA > VAc. An attempt has been made to explain the observed reactivity pattern shown by different vinyl monomers in graft copolymerization reactions.  相似文献   

2.
In order to initiate a comprehensive study of graft copolymerization of vinyl monomers onto soluble protein-gelatin, we have studied grafting of ethyl acrylate (EA) and methyl methacrylate (MMA) onto gelatin using eerie ammonium nitrate (CAN) and eerie ammonium sulfate (CAS) as the redox initiator in an aqueous medium. A small amount of mineral acid (HNO3 with CAN and H2SO4 with CAS) was found to catalyze the graft copolymerization. Graft copolymerization reactions were carried out at different temperatures. Maximum grafting occurred at 65°C both with EA and MMA. Percentage grafting has been determined as function of 1) concentration of monomer (EA and MMA), 2) concentration of initiator (CAN and CAS), 3) concentration of acid (HNO3 and H2SO4), 4) time, and 5) temperature.  相似文献   

3.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

4.
Methyl methacrylate (MMA), acrylic acid (AAc), and vinyl acetate (VAc) were graft copolymerized onto Himachali wool in an aqueous medium by using vanadium oxyacetyl acetonate as initiator. Graft copolymerization was studied at 45, 55, 65, and 75°C for various reaction periods. The percentage of grafting was determined as functions of concentration of monomers, concentration of initiator, time, and temperature. The maximum percentage of grafting with each monomer occurred at 55°. Several grafting experiments were carried out in the presence of various additives which include HNO3, DMSO, and pyridine. Nitric acid was found to promote grafting of MMA. All these additives had adverse effects on grafting of VAc and AAc. MMA, VAc, and AAc were found to differ in reactivity toward grafting and followed the order MMA > AAc > VAc.  相似文献   

5.
Methyl methacrylate (MMA), methyl acrylate (MA), and ethyl acrylate (EA) have been graft copolymerized onto wool fiber in aqueous medium using the chromium acetylacetonate-tertiary-butyl hydroperoxide (Cr(acac)3-TBHP) system as initiator. The percentage of grafting has been determined as a function of the concentrations of monomer, chelate, and TBHP, and the time and temperature under optimum conditions. MMA produced a maximum grafting of 119.8%, MA produced a maximum grafting of 56%, while EA afforded maximum grafting to the extent of 41.9%. Different vinyl monomers were found to follow the following reactivity order toward grafting onto wool fiber in the presence of the Cr(acac)3-TBHP system: MMA > MA > EA.  相似文献   

6.
In an attempt to modify water-soluble synthetic polymers, graft Copolymerization of methylmethacrylate (MMA) and ethyl acrylate (EA) onto poly(vinyl alcohol), PVA, has been studied by using gamma irradiation from a Co60 source as initiator. The graft copolymerization was carried out in an aqueous medium by the mutual method in air. The effect of total dose and concentration of vinyl monomers on percentage of grafting has been determined. Water plays a significant role in the enhancement of graft copolymerization and the optimum amount of water to afford maximum grafting has been evaluated. The effect of CH3OH on aqueous grafting of MMA and EA by radiation method has been studied. The graft copolymer has been characterized by IR spectroscopic and thermogravimetric methods.  相似文献   

7.
Poly(methyl acrylate) has been grafted onto wool by using ceric ion as redox initiator in an aqueous medium. Initiation by ceric ammonium nitrate (CAN) was carried out in the presence of nitric acid of varying concentration at 35, 45, and 50°C for a period of 1.5 or 3 hr. Percent grafting was found to be dependent on concentrations of acid and monomer, reaction time, and temperature. Above 45°C, a considerable amount of homopolymer was formed; at 35°C, very little grafting of poly(methyl acrylate) was observed. Nitric acid catalyzed the reaction and a concentration of 0.17–0.19M HNO3 was found suitable.  相似文献   

8.
Graft copolymerization of vinyl acetate (VAc) onto cellulose has been studied in an aqueous medium in the presence of Fe(acac)3, Al(acac)3, and Zn(acac)2 as initiators. Percentage of grafting has been determined as a function of concentration of initiators and monomer, reaction time, and temperature. The reactivities of different metal chelates toward grafting of VAc on cellulose have been determined and were found to follow the order: Zn(acac)2 > Al(acac)3 > Fe(acac)3. A plausible mechanism for grafting involving complex formation between metal chelates and vinyl monomer has been suggested. Several grafting experiments were carried out in presence of CCl4, CHCl3, CH3CH2CH2SH and Et3N. All these additives with the exception of Et3N were found to suppress grafting.  相似文献   

9.
Poly(ethyl acrylate) has been grafted onto Himachali wool in an aqueous medium by using ceric ammonium nitrate (CAN) as redox initiator. Copolymerization was studied at five different temperatures: 40, 45, 50, 55, and 60°C. Maximum grafting occurred at 45°C. Nitric acid was found to catalyze the graft copolymerization reactions. Percentage and efficiency of grafting were found to be dependent upon concentrations of CAN (initiator) and of monomer. Percentage of grafting has been determined as function of time, and from the slope of percent grafting versus time plot, the initial rate of graft copolymerization (R) has been determined.  相似文献   

10.
Graft copolymerization of methyl methacrylate (MMA) onto Himachali wool fiber has been investigated in aqueous medium by using γ irradiation from a 2100 Ci60CO source as means of initiation. Graft copolymerization was carried out by the mutual method in nitrogen atmosphere as well as in air. Effect of mineral acids and acetic acid on percentage of grafting was studied. Percentage of grafting was determined as functions of total dose, concentration of monomer, and concentration of acids. Maximum percentage of grafting in the presence of acids occurred in nitrogen atmosphere at a total dose of 1.05 MR. All the acids were found to influence grafting and the reactivity of different acids towards graft copolymerization was found to follow the order: H2SO4 > HCl > HNO3 > HC1O4 > HOAc. An attempt has been made to explain the reactivity order of different acids in the light of the mechanism proposed for γ-irradiation-induced graft copolymerization of vinyl monomer onto wool fiber.  相似文献   

11.
In an attempt to compare the relative reactivities of different redox systems in graft copolymerization of vinyl monomers onto cellulose, we studied grafting of ethylacrylate (EA) in aqueous medium by using the well-known redox intiator, ferrous ammonium sulfate–potassium persulfate (FAS–KPS) system, and its reactivity was compared with that of Fenton's reagent (Fe2+ ?H2O2) towards grafting of EA onto cellulose. Optimum conditions for affording maximum grafting were evaluated and percent grafting is expressed as functions of different reaction variables. Evidence of grafting was obtained from IR spectroscopic measurements, SEM, and TGA studies of the grafted and ungrafted cellulose. A plausible explanation for the observed reactivity pattern shown by (FAS–KPS) and (FAS–H2O2) redox systems is offered. Fenton's reagent (Fe2+ ?H2O2) was found to be several times more reactive than (FAS–KPS) redox system.  相似文献   

12.
Photo-induced graft copolymerization was investigated using nitrocellulose having a different nitrogen content, especially by a noncatalytic method. The effects of a sample nitrogen content, reaction temperature, and monomer, sample, solvent and photosensitizer concentrations on the degree of grafting, the grafting efficiency, and the apparent number of grafted chains were examined. Methyl methacrylate (MMA) and methyl acrylate (MA) easily polymerized, but acrylamide (AAm), vinyl acetate (VAc), and styrene (St) scarcely polymerized. The apparent activation energies were 4.1–11.5 kcal/mol, indicating the small value in the high nitrogen content sample. The degree of grafting and the apparent number of grafted chains increased with increasing monomer and sample concentrations. In every case, the grafting efficiency was at a high level, above 90%. The polymerization did not occur without the sample in the same condition. Furthermore, a part of nitro groups split off by the irradiation of light. With respect to these results, the mechanisms of the photo graft copolymerization was discussed.  相似文献   

13.
Summary: Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using ceric ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA.  相似文献   

14.

The graft copolymerization of acrylonitrile (AN) and ethyl acrylate (EA) comonomers onto cellulose has been carried out using ceric ammonium nitrate (CAN) as an initiator in the presence of nitric acid at 35±0.1°C. The addition of ethyl acrylate as comonomer has shown a significant effect on overall and individual graft copolymerization of acrylonitrile on cellulose. The graft yield (%GY) and other grafting parameters viz. true grafting (%GT), graft conversion (%CG), cellulose number (Ng) and frequency of grafting (GF) were evaluated on varying the concentration of comonomers from 6.0–30.0×10?1 mol dm?3 and ceric (IV) ions concentration from 2.5–25×10?3 mol dm?3 at constant feed composition (fAN 0.6) and constant concentration of nitric acid (7.5×10?2 mol dm?3) in the reaction mixture. The graft yield (%GY) and other grafting parameters were optimal at 15×10?1 mol dm?3 concentration of comonomers and at 10×10?3 mol dm?3 concentration of ceric ammonium nitrate. The graft yield (%GY) and composition of grafted chains (FAN) was optimal at a feed composition (fAN) of 0.6. The energy of activation (Ea) for graft copolymerization has been found to be 16 kJ mol?1. The molecular weight (Mw) and molecular weight distribution (Mw/Mn) of grafted chains was determined by GPC and found to be optimum at 15×10?1 mol dm?3 concentration of comonomer in the reaction mixture. The composition of grafted chains (FAN) determined by IR method was used to calculate the reactivity ratios of monomers, which has been found to be 0.62 (r1) and 1.52 (r2), respectively for acrylonitrile (AN) and ethyl acrylate (EA) monomers used for graft copolymerization. The energy of activation for decomposition of cellulose and grafted cellulose was determining by using different models based on constant and different rate (β) of heating. Considering experimental observations, the reaction steps for graft copolymerization were proposed.  相似文献   

15.
This paper deals with graft copolymerization of acrylic acid (AA) onto Xinjiang fine wool.fiber in aqueous medium initiated by gamma rays. Graft copolymerization was carried out by themutual irradiation method in limited air. Percent grafting and percent efficiency have been deter-mined as a function of total dose, dose rate, concentration of monomer, wool weight and reactiontemperature. Graft copolymers are characterized with infrared (IR) spectroscopy, scanning elec-tron microscopy (SEM), and X--ray diffractometer. Properties of the grafts were studied, and compared with the virgin fiber.  相似文献   

16.
The copolymerization of vinyl acetate with methyl acrylate in the presence of Et2AlCl, Et1.5AlCl1.5, and Et2AlCl-benzoyl peroxide systems has been investigated. The influence of monomer ratios and organoaluminium compound concentration on the copolymer yield and composition have been determined and discussed. The monomer sequences distribution has been studied by means of 13C-NMR. It was found that organoaluminium compounds in the studied systems catalyze not only the alternating copolymerization, but also the homopropagation of both monomers. An alternating copolymer was obtained in reactions carried out at ?78°C, when a large excess of vinyl acetate was used in the monomer feed.  相似文献   

17.
The use of small amounts of carboxylic monomers in industrial recipes with high solids content enhances colloidal stability due to the presence of carboxylic groups on the outer surface of the polymer particles. Understanding the relationship between several different but interdependent phenomena, including particle nucleation, kinetics, particle aggregation, monomer type, solids content, the role of the carboxylic monomer and the influence of reaction temperature may improve the control over particle size and latex stability. In this work, the kinetics and stabilization performance of semicontinuous vinyl acetate (VA) and butyl acrylate (BA) emulsion copolymerization reactions are studied under different reaction temperatures, acrylic acid (AA) concentrations, solids contents and monomer feed compositions. Results show that choosing optimal AA concentrations and reaction temperatures are key factors in order to enhance the stabilization performance in semicontinuous VA/BA emulsion copolymerization.  相似文献   

18.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

19.
Ternary systems consisting of sodium dodecyl sulfate (SDS) as surfactant, water and several vinyl and acrylic monomers [vinyl acetate (VAc), acrylonitrile (ACN), ethyl acrylate (EtA), butyl acrylate (BuA), 2-ethylhexyl acrylate (EHA), methyl methacrylate (MMA), butyl methacrylate (MMB) and styrene (St)] were studied. The solubilization of monomer in aqueous solutions of SDS was found to be dependent on its structure and concentration. The molar specific solubility was observed to decrease with hydrophobicity and increase with polarity of monomer, that is, it was lowest for St, EHA and highest for MMA, EtA. The NMR and fluorescence studies indicate that solubilization occurred at a different domain of the interfacial layer. The hydrophobic monomers are solubilized toward the hydrocarbon interior of the micelles whereas the hydrophilic ones, toward the hydrated tail of the surfactant. The penetration of monomers into the oil-in-water interface is limited because the screening of charged ions of emulsifier is not operative. A relationship between the persulfate initiator decomposition rate and the lability of the α-hydrogen linked to the substituted carbon of the double bond was established. The initiator productivity was the highest for MMA (lacking such α-hydrogen) and the lowest for VAc and St, the monomers in which the C-Hα bond is the most reactive.  相似文献   

20.
Grafting of poly(ethyl acrylate) and its copolymers was carried out on peroxide-treated sisal fibers. Effect of reaction conditions on graft parameters like rate of graft copolymerization and % grafting were studied. The kinetics of graft copolymerization of ethyl acrylate onto peroxide-treated sisal fibers was studied, and the rate expression for the graft copolymerization was found to be Rg = k[EA]1.74[FAS]0.51. Grafting of poly(EA) and copolymers onto peroxide-treated sisal fibers was confirmed by FT-IR spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction studies. Thermal stability and percentage crystallinity of sisal fibers were enhanced with peroxide treatment and graft copolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号