首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radiation protective effect of the breaking of secondary bonding in protein was examined with such amino acids as disodium inosine-5′ -monophosphate and disodium guanosine-5′ -monophosphate and vitamins such as thiamine and λ-ascorbic acid. The behavior of the viscosity change closely resembles that found with the sodium 1-glutamate as shown by a similar dependence on concentration.  相似文献   

2.
Aggregation behavior of a novel anionic amphiphilic molecule, sodium N-(2-(n-dodecylamino)ethanoyl)-L-alaninate (C(12)Ala), was studied in the presence of sodium dodecyl sulfate (SDS) surfactant at different [C(12)Ala]/[SDS] molar ratios and concentrations. The viscosity of aqueous SDS solution increased in the presence of C(12)Ala surfactant. The bulk viscosity of water was found to increase upon increase of both molar ratio and total surfactant concentration. The microenvironments of the self-assemblies were investigated using the fluorescence probe technique. Fluorescence anisotropy studies indicated formation of rodlike micelles. Both dynamic light scattering and small-angle neutron scattering measurements were performed to obtain the size and shape of the microstructures. The concentration and composition dependence of the hydrodynamic diameter of the aggregates were investigated. Transmission electron micrographs revealed the presence of a hexagonal liquid crystal phase in dilute solutions of the C(12)Ala-SDS mixture. The micrographs of moderately concentrated solution, however, showed cholesteric liquid-crystal structures with fingerprint-like texture. Temperature-dependent phase behavior of the self-assemblies was studied by use of the fluorescence probe technique.  相似文献   

3.
The effects of interfacial viscosity on the droplet dynamics in simple shear flow and planar hyperbolic flow are investigated by numerical simulation with diffuse interface model. The change of interfacial viscosity results in an apparent slip of interfacial velocity. Interfacial viscosity has been found to have different influence on droplet deformation and coalescence. Smaller interfacial viscosity can stabilize droplet shape in flow field, while larger interfacial viscosity will increase droplet deformation, or even make droplet breakup faster. Different behavior is found in droplet coalescence, where smaller interfacial viscosity speeds up film drainage and droplet coalescence, but larger interfacial viscosity postpones the film drainage process. This is due to the change of film shape from flat‐like for smaller interfacial viscosity to dimple‐like for larger interfacial viscosity. The film drainage time still scales as Ca0 at smaller capillary number (Ca), and Ca1.5 at higher capillary number when the interfacial viscosity changes. The interfacial viscosity only affects the transition between these limiting scaling relationships. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1505–1514, 2008  相似文献   

4.
The hydration of micellised sodium dehydrocholate molecules was determined by viscosity measurements. It was found that there are 39 water molecules for each micellised surfactant molecule. About ten water molecules may be attributed to the hydration of the sodium carboxylate group. By assignation of two water molecules to each of the three carbonyl groups, the total hydration of a micellised sodium dehydrocholate molecule was estimated as about 16 water molecules. The remaining 23 water molecules per micellised sodium dehydrocholate molecule may be attributed to water trapped in the structure of micelles.  相似文献   

5.
In this paper, we investigate the rotational viscosity for a chlorine fluid and for a fluid composed of small linear molecules by using equilibrium molecular dynamics simulations. The rotational viscosity is calculated over a large range of state points. It is found that the rotational viscosity is almost independent of temperature in the range studied here but exhibits a power-law dependency on density. The rotational viscosity also shows a power-law relationship with the molecular length, and the ratio between the shear and rotational viscosities approaches 0.5 for the longest molecule studied here. By changing the number of atoms or united atomic units per molecule and by keeping the molecule length fixed, we show that fluids composed of molecules which have a rodlike shape have a lower rotational viscosity. We argue that this phenomenon is due to the reduction in intermolecular connectivity, which leads to larger fluctuations around the values possessed by the fluid on average. The conclusions here can be extended to fluids composed of uniaxial molecules of arbitrary length.  相似文献   

6.
A photosensitive amphiphilic molecule can switch the shape of an assembled vesicle as determined by microscopic observation. Photoisomerization induces a change in membrane fluctuation behavior or a morphological transition between ellipsoid and bud shapes, depending on the asymmetrical degree of the initial shape. The mechanism of this reversible photoswitching in the vesicle morphology is interpreted in terms of a change in the effective cross-sectional area of the photosensitive molecule.  相似文献   

7.
The anionic surfactant sodium oleate (NaOA) can self-assemble in aqueous solution in the presence of counter-ion inorganic salts to form wormlike micelles (WLMs), which exhibited viscoelastic behavior. In this paper, KCl was used to induce the formation of wormlike micelles with sodium oleate. In this process, we found that the addition of N, N-dimethylethanolamine (DMEA) can destroy the structure of WLMs leading significant decrease of viscosity. However, after introducing CO2 into the ternary solution (KCl-NaOA-DMEA), the WLMs can be regenerated due to the electrostatic interaction between the protonated DMEA and the anionic surfactants. The addition of sodium hydroxide (NaOH) causes the electrostatic interaction between OA- and DMEAH+ be destroyed, which results in the wormlike micelles becoming spherical micelles of lower viscosity. The transition of WLMs with high viscosity and low viscosity spherical micelles can be repeated several times by using CO2 and NaOH.  相似文献   

8.
The effect of sodium dodecyl sulfate (SDS) on the micellization and aggregation behavior of a poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) amphiphilic copolymer (Pluronic L64: EO13 PO30 EO13) have been investigated by various techniques like, cloud point, viscosity, isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), fluorescence spectroscopy, room temperature phosphorescence (RTP), and small angle neutron scattering (SANS). Addition of SDS in L64 solutions shows mark alteration of different properties. We observed synergistic interaction between SDS and Pluronic L64. The changes in the critical micelle concentration (CMC), critical micelle temperature (CMT), cloud point (CP), micelle size, and shape has been correlated and reported in terms of structure dynamics and mechanics. The ITC titrations have been used to explore the different stages of binding and interactions of SDS with L64. The enthalpies of aggregation for copolymer-SDS aggregates binding, organizational change of bound aggregates, and the threshold concentrations of SDS in the presence of copolymer were estimated directly from ITC titration curves. The effect of temperature on enthalpy values has been reported in terms of different aggregation state. Fluorescence and RTP for L64 were used to investigate the change in micellar environment on the addition of SDS at different temperature. Appearance and shifting of SANS peaks have been used to monitor the size and inter micellar interaction on addition of SDS in L64 solution. Cloud point and viscosity elaborate the penetration of SDS molecule in L64 micelle and hence changing the micellar architect.  相似文献   

9.
采用尺寸较大的有机分子格式试剂(3,5-二甲基苯溴化镁)修饰ZSM-5催化剂,用乙苯歧化反应研究了修饰催化剂的择形性,并利用探针分子动力学扩散测试结合探针分子吸附红外等手段研究分子筛孔径和内外表面酸性性质等。结果表明,少量的3,5-二甲基苯溴化镁精确地中和了ZSM-5分子筛外表面的酸性中心,导致乙苯歧化反应中极高的对二乙苯选择性。而探针分子动力学结果表明,这种修饰并未引起分子筛孔道结构的变化。  相似文献   

10.
采用尺寸较大的有机分子格式试剂(3,5-二甲基苯溴化镁)修饰ZSM-5催化剂,用乙苯歧化反应研究了修饰催化剂的择形性,并利用探针分子动力学扩散测试结合探针分子吸附红外等手段研究分子筛孔径和内外表面酸性性质等。结果表明,少量的3,5-二甲基苯溴化镁精确地中和了ZSM-5分子筛外表面的酸性中心,导致乙苯歧化反应中极高的对二乙苯选择性。而探针分子动力学结果表明,这种修饰并未引起分子筛孔道结构的变化。  相似文献   

11.
In this work, the structure of poly(acrylic acid) (PAA) molecules in electrolyte solutions obtained from molecular dynamic simulations was compared with experimental data derived from dynamic light scattering (PCS), dynamic viscosity, and electrophoretic measurements. Simulations and measurements were carried out for polymer having a molecular weight of 12 kD for various ionic strengths of the supporting electrolyte (NaCl). The effect of the ionization degree of the polymer, regulated by the change in the pH of the solution in the range 4-9 units, was also studied systematically. It was predicted from theoretical simulations that, for low electrolyte concentration (10(-3) M) and pH = 9 (full nominal ionization of PAA), the molecule assumed the shape of a flexible rod having the effective length L(ef) = 21 nm, compared to the contour length L(ext) = 41 nm predicted for a fully extended polymer chain. For an electrolyte concentration of 0.15 M, it was predicted that L(ef) = 10.5 nm. For a lower ionization degree, a significant folding of the molecule was predicted, which assumed the shape of a sphere having the radius of 2 nm. These theoretical predictions were compared with PCS experimental measurements of the diffusion coefficient of the molecule, which allowed one to calculate its hydrodynamic radius R(H). It was found that R(H) varied between 6.6 nm for low ionic strength (pH = 9) and 5.8 nm for higher ionic strength (pH = 4). The R(H) values for pH = 9 were in a good agreement with theoretical predictions of particle shape, approximated by prolate spheroids, bent to various forms. On the other hand, a significant deviation from the theoretical shape predictions occurring at pH = 4 was interpreted in terms of the chain hydration effect neglected in simulations. To obtain additional shape information, the dynamic viscosity of polyelectrolyte solutions was measured using a capillary viscometer. It was found that, after considering the correction for hydration, the experimental results were in a good agreement with the Brenner's viscosity theory for prolate spheroid suspensions. The effective lengths derived from viscosity measurements using this theory were in good agreement with values predicted from the molecular dynamic simulations.  相似文献   

12.
Summary Interaction of sodium dodecyl sulphate with transfusion gelatin has been studied in low pH range by viscosity measurements. It was found that with the addition of sodium dodecyl sulphate to transfusion gelatin at pH's 2.0, 3.0 and 4.0 viscosity decreases until precipitation sets in. With further addition of sodium dodecyl sulphate precipitate redissolves. The decrease in viscosity is probably due to greater compactness of the protein molecules. The behaviour of isoelectric transfusion gelatin towards sodium dodecyl sulphate has been found to be markedly different.With 3 figures  相似文献   

13.
The conformational behavior of a globular protein, trypsin has been studied in presence of an anionic surfactant, sodium dodecyl sulfate (SDS) in aqueous medium by different techniques, such as, viscometry, circular dichroism, fluorimetry, Fourier transform infra-red, UV-vis absorption, dynamic light scattering and nuclear magnetic resonance. The results indicate that the viscosity of the mixture increases above the critical micelle concentration of SDS micelle supporting an expansion of a protein coil in the cluster. The spectroscopic techniques show the change of the conformation, i.e., the change of the values of alpha-helicity, beta-sheet, and random-coil of trypsin in the presence of SDS, and ultimately unfolding of trypsin occurs due to strong electrostatic repulsion of micellar clusters of the protein-surfactant complexes.  相似文献   

14.
Critical micelle concentrations of AOT in water in the presence of sodium chloride, sodium acetate, sodium propionate, and sodium butyrate were determined at 25 degrees C by the surface tension method. The co-ions do not have any effect on the value of critical micelle concentration. The surface density of AOT at the air-water interface increases in the presence of added electrolyte and attains a maximum value of 2.5+/-0.1 mol m-2 at a particular electrolyte concentration which is different for sodium chloride and the other three electrolytes. From the Corrin-Harkins plot it has been found that for AOT micelles the counterion binding constant has values 0.40 and 0.82 below and above approximately 0.015 mol kg-1 electrolyte concentration (c*), respectively. Measurement of sodium ion activity from the EMF method has confirmed such a shift in the counterion binding constant of AOT at c*. The higher value of the counterion binding constant for AOT has been reported for the first time. From fluorescence spectroscopy it has been found that the aggregation number of AOT is 22 in water and its average aggregation numbers in the presence of electrolytes are about 34 and 136 below and above c*, respectively. The increase by a factor of 2 in the counterion binding constant is shown to be due to a change in the shape of the AOT micelles around c*. The shape of AOT micelles in the electrolyte concentration range c* is inferred to be oblate spheroid and a change from this shape appears to occur above c*. A sudden increase in the polarity of the micelle-solution interface is also observed above c*.  相似文献   

15.
The intrinsic viscosity of poly(methacrylic acid) has been studied in mixtures of 0.002N HCI and a series of aliphatic alcohols. The behavior found previously with ethanol is shown to apply in the case of admixture with methanol, n-propanol, and 1,2-ethanediol. The intrinsic viscosity first drops to a minimum and then increases sharply to a maximum. With ethanol and n-propanol the maximum is followed by another minimum and maximum. With methanol and 1,2-ethanediol this effect is absent or much smaller. Methanol and 1,2-ethanediol are equivalent, molecule for molecule, in their influence on the intrinsic viscosity. With ethanol and n-propanol there are in addition one and two shoulders, respectively, in the passage from the first minimum to the first maximum. Good correlation of the data is obtained if alcohol concentration is plotted as the mole fraction of carbon atoms per OH group (in the alcohol). The first maximum in particular was shown to correspond to the point where the number of water molecules per alcohol in the solvent mixture equals the number of C atoms per hydroxyl in the alcohol. The shoulders and first minima were found to correspond to other simple ratios. This behavior reflects changes in alcohol–water structure. The maximum in the case of ethanol was found to be the most pronounced and ethanol seems to possess optimal properties from this point of view.  相似文献   

16.
PVP为模板控制合成球形碳酸钙   总被引:15,自引:0,他引:15  
Spherical calcium carbonate was prepared by the reaction of sodium carbonate with calcium chloride at the presence of a protein-like molecule, polyvinylpyrrolidone, as the template. The products were characterized by elemental analyses, XRD, SEM, and TG-DSC respectively. The effects of polyvinylpyrrolidone on the crystal form and morphology of the as-prepared CaCO3 were investigated. It was found that the aggregative shape of the produced calcium carbonate crystalline could be well controlled by adjusting the concentration of the polyvinylpyrrolidone template. This may be of important meanings to the biomimetic synthesis of novel inorganic materials.  相似文献   

17.
Four purified sodium lignosulfonate (SL) samples with different molecular weights were prepared by fractionation using ultrafiltration. The effect of the molecular weights of SL on the apparent viscosity of coal‐water slurry (CWS) was investigated by studying the adsorption amounts and the zeta potentials in the coal‐water interface. The results show that the adsorption behavior of the dispersants in the coal‐water interface is the key factor to affect the dispersing effect, that the higher adsorption amount and compact adsorption film help reduce the viscosity reduction of CWS, and that the zeta potential is also an important factor influenced by the sulfonic group and carboxy contents of the lignosulfonate molecule. Furthermore, SL with a molecular weight ranging from 10000 to 50000 has both a higher adsorbed amount and zeta potential on the coal surface and the best effect on reducing the viscosity of the coal‐water slurry.  相似文献   

18.
Time dependent viscosity of concentrated alumina suspensions   总被引:4,自引:0,他引:4  
Viscometric investigations of concentrated aqueous alumina suspensions with particles smaller than 5 μm have been performed. Experimental flow curves indicate thixotropy in the shear rate interval between =20 and 640 s−1. In the range smaller than =200 s−1 we found pseudoplastic flow behavior, in the higher range the material shows dilatancy. The non-Newtonian behavior results from a small content of sodium aluminum oxide in the alumina suspension. This gives rise to interparticle forces that can drive the suspension into a gel-like state. The time scale of this process is some days. On the short-time scale of some hours the material ages slowly increasing moderately the apparent viscosity. Studying the relaxation process after a shear rate jump, the shear stress time dependency at constant shear rate follows an exponential law. There is a single particular relaxation time for each shear rate. The relaxation towards a steady state occurs asymptotically over some 103 s. Flow curves calculated from steady state data after relaxation processes are below the experimental flow curves which were measured during some 100 s. The flow curves follow the Herschel–Bulkley formula. The shape of the viscosity curves indicates changes of suspension structure at ca. =200 and 400 s−1. At constant shear rates in the interval between =400 and 450 s−1 the apparent viscosity of the alumina suspension fluctuates periodically in time in the same manner found for other suspensions. This effect is interpreted as periodic organization of agglomeration and deglomeration processes. Supposing, that the stabilisation energy of agglomerates is of the order of the energy introduced by the mechanical shear field, the observation of oscillations at =400 s−1 is in agreement with the drastic slope change in the viscosity curves.  相似文献   

19.
The effect of different 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS)-methoxypolyethyleneglycol methacrylate (MPEG) comb-like copolymers on the adsorption behavior, electrokinetic and rheological properties of alumina suspensions has been investigated. The change in adsorption isotherms with the content of the two monomers, the medium pH and the ionic strength indicated that the interaction of these copolymers was found to be controlled by both the fraction of ionic groups on the polymer and by the length of the polyethyleneglycol (PEG) segments. Adsorption of the copolymers on alumina particles is accompanied by a shift in the IEP toward acid pH values and may lead to a charge reversal above a certain level. The presence of the PEG segment equally affects the magnitude of the zeta potential by moving the shear plane forward. Addition of the copolymers greatly affects the rheological behavior of the suspension; the viscosity at a defined shear rate decreases and reaches an optimum, which is all the lower as the fraction of the ionic groups is higher. The dispersing effect of the copolymer was controlled by both the ionization level of the copolymer and by the length of the PEG segments.  相似文献   

20.
When protein in various liquids containing aromatic hydrocarbons, such as benzene, naphthalene, and phenanthrene, is irradiated by γ-rays from a 60Co source, the breaking of secondary bonding in the protein molecule varies with the irradiation liquids containing aromatic hydrocarbons. Protein irradiated by γ-rays from a 60Co source in air showed the effect of pH on the breaking of secondary bonding in the protein molecule. In both cases an empirical equation for the viscosity change was obtained, and the phenomena were explained on the basis of the molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号