首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

2.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

3.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

4.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

5.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

6.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

7.
Let W: ?→(0,∞) be continuous. DoesW admit a classical Jackson Theorem? That is, does there exist a sequence $\{ \eta _n \} _{n = 1}^\infty $ of positive numbers with limit 0 such that for 1≤p≤∞, $\mathop {\inf }\limits_{\deg (P) \le n} ||(f - P)W||_{L_p (R)} \le \eta n||f'W||_{L_p (R)} $ for all absolutely continuousf with $||f'W||_{L_p (R)} $ finite? We show that such a theorem is true iff both $\mathop {\lim }\limits_{\chi \to \infty } W(\chi )\int_0^\chi {W^{ - 1} } = 0$ and $\mathop {\lim }\limits_{\chi \to \infty } W^{ - 1} (\chi )\int_\chi ^\infty W = 0,$ with analogous limits asx→?∞. In particular,W(x)=exp(?|x|) does not admit a Jackson theorem of this type. We also construct weights that admit anL 1 but not anL Jackson theorem (or conversely).  相似文献   

8.
9.
Говорят, что ряд \(\mathop \sum \limits_{k = 0}^\infty a_k \) сумм ируется к s в смысле (С, gа), gа >?1, если $$\sigma _n^{(k)} - s = o(1),n \to \infty ,$$ в смысле [C,α] λ , α<0, λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {\sigma _k^{(\alpha - 1)} - s} \right|^\lambda = o(1),n \to \infty ,$$ и в смысле [C,0] λ , λ>0, если $$\frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n \left| {(k + 1)(s_k - 1) - k(s_{k - 1} - 1)} \right|^\lambda = o(1),n \to \infty ,$$ где σ n (α) обозначаетn-ое ч езаровское среднее р яда. Суммируемость [C,α] λ , α>?1, λ ≧1 о значает, что $$\mathop \sum \limits_{k = 0}^\infty k^{\lambda - 1} \left| {\sigma _k^{(\alpha )} - \sigma _{k - 1}^{(\alpha )} } \right|^\lambda< \infty .$$ В данной статье содер жится продолжение ис следований свойств [C,α] λ -суммиру емо сти, которые начали Винн, Х ислоп, Флетт, Танович-М иллер и автор, в частности свя зей между указанными методами суммирования. Наконец, даны некотор ые простые приложени я к вопросам суммируемости ортог ональных рядов.  相似文献   

10.
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation $$\Delta (p_n (\Delta x_n )^\gamma ) + q_n f(x_{n - \sigma } ) = 0,\;\;\;\;n = 0,1,2,...,$$ when $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ . When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} < \infty }$ we present some sufficient conditions which guarantee that, every solution oscillates or converges to zero. When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ holds, our results do not require the nonlinearity to be nondecreasing and are thus applicable to new classes of equations to which most previously known results are not.  相似文献   

11.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

12.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

13.
The algebraic independence of certain transcendental continued fractions   总被引:2,自引:0,他引:2  
In the present note the algebraic independence of certain continued fractions is proved. Especially, we prove that the Böhmer-Mahler's series \(\sum\limits_{K = 1}^\infty {\left[ {\omega _v k} \right]} {\text{ }}g_\mu ^{ - k} \left( {1 \leqslant \mu \leqslant s,1 \leqslant v \leqslant t} \right)\) are algebraically independent, where \(\mathop \omega \nolimits_1 {\text{ , }}...{\text{ , }}\mathop \omega \nolimits_{\text{t}} \) , ..., \(\mathop g\nolimits_1 {\text{ , }}...{\text{ , }}\mathop g\nolimits_s \) are some irrational numbers andg 1, ...,g s are distinct positive integers.  相似文献   

14.
The following statement is proved: Theorem.Let f(x), 0≦x≦2π, possess the Fourier expansion $$\mathop \sum \limits_{\kappa = - \infty }^\infty c_\kappa e^{in} \kappa ^x with \bar c_\kappa = c_{ - \kappa } , n_\kappa = - \bar n_{ - \kappa }$$ where {n k } is a Sidon sequence. Then in order to have $$\mathop \sum \limits_{\kappa = - \infty }^\infty |c_\kappa |^p< \infty$$ for a given p, 1 $$\mathop \sum \limits_{k = 1}^\infty \left( {\frac{{\left\| f \right\|L^k (0,2\pi )}}{k}} \right)^p< \infty$$ . An analogous statement holds true for series with respect to the Rademacher system.  相似文献   

15.
Пустьl 1 иl 2 — неотрицательные убывающие функции на (0, ∞). Допустим, что $$\int\limits_0^\infty {S^{n_i - 1} l_i (S)\left( {1 + \log + \frac{1}{{S^{n_i } l_i (S)}}} \right)dS}< \infty ,$$ , гдеn 1 иn 2 — натуральные числа. Тогда для каждой функции \(f \in L^1 (R^{n_1 + n_2 } )\) при почти всех (x0, у0) мы имеем $$\mathop {\lim }\limits_{\lambda \to \infty } \lambda ^{n_1 + n_2 } \int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_1 } } (\lambda |x|)l_2 (\lambda |y|)f(x_0 - x,y_0 - y)dx dy = f(x_0 ,y_0 )\int\limits_{R^{n_1 } } {\int\limits_{R^{n_2 } } {l_i (|x|)l_2 } } (|y|)dx dy.$$   相似文献   

16.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

17.
По определению после довательность {μ n пр инадлежит классуG s , если звезда М иттагЛеффлера произвольного степе нного ряда (1) $$\mathop \sum \limits_0^\infty a_n z^n , \mathop {lim sup}\limits_{n \to \infty } \left| {a_n } \right|^{1/n}< \infty $$ , совпадает со звёздам и Миттаг-Леффлера сте пенных рядов $$\mathop \sum \limits_0^\infty \mu _n a_n z^n ,\mathop \sum \limits_0^\infty \mu _n^{ - 1} a_n z^n $$ . В работе установлены следующие утвержден ия Теорема 1.Для произво льной последователь ности ? n с условиями $$0< \varphi _n< 1,\mathop {lim}\limits_{n \to \infty } \varphi _n = 0,\mathop {lim}\limits_{n \to \infty } \varphi _n^{1/n} = 1$$ существует неубываю щая функция χ(t) такая, ч то моменты \(\mu _n = \int\limits_0^1 {t^n d\chi (t)} \) удовлетворяют условию 0<μnn звезда М иттаг-Леффлера любог о ряда (1) совпадает со звездой МиттагЛеффлера степенных рядов . Теорема 2. Для произвол ьной неотрицательно й последовательности {аn} с условием {a n } и для любой последов ательности {?n} для к оторой 0n<1, \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n = 0\) сущест вуютπ={π n }∈G s и последовательнос ть {пi} такие, что anμn≦1 (n≧n0), \(a_{n_i } \mu _{\mu _i } \geqq exp( - \varepsilon _{n_i } )\) (i=1, 2, ...) и при эmom звезда Миттаг-Леффлера ряда (1) совпа дает со звездой Миттаг- Леффлера степенных р ядов .  相似文献   

18.
Let Zj be the Euclidean space of vectors \((z_{j,1,...,} z_{j_{j \cdot n_j + 1} } ), Z = \mathop \oplus \limits_{j = 1}^P Z_j\) . The function u: Z → ?+, u ?0, is said to be logarithmically p-subharmonic if log u(z) is upper semicontinuous with respect to the totality of the variables and subharmonic or identically equal to ?∞ with respect to each zj when the remaining ones are fixed. For such functions, with the growth estimate $$log u(z) \leqslant \delta \mathop \Pi \limits_{j = 1}^P (1 + |z_{j,n_j + 1} |) + N(\mathop {\sum\limits_{\mathop {1 \leqslant j \leqslant p}\limits_{} } {z_{j,k}^2 } }\limits_{1 \leqslant k \leqslant n_j } )^{1/2} + C; \delta ,N \geqslant 0, C \in \mathbb{R}$$ one proves theorems on equivalence of) (Lq)-norms of their restrictions to \(X = \mathop \oplus \limits_{j = 1}^P (Z_{j,1} ,...,z_{j,n_j } )\) and to a relatively dense subset of it, generalizing the known Cartwright and Plancherel-Pólya results.  相似文献   

19.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

20.
пУстьт(с) — клАсс РЕгУ льРНых МАтРИц (с mn ) с ДЕИстВИтЕльНыМИ ИлИ кОМплЕксНыМИ ЧлЕНАМИ, УДОВлЕтВОРь УЩИх УслОВИУ lim sup $$\mathop {\lim \sup }\limits_{m \to \infty } \mathop \Sigma \limits_{n = 0}^\infty \left| {c_{mn} } \right| = C.$$ . РАссМАтРИВАЕтсь сУМ МИРОВАНИЕ МЕтОДАМИ к лАссАт(с) ОгРАНИЧЕННых пОслЕД ОВАтЕльНОстЕИ Иж лИНЕИНых тОпОлОгИ ЧЕскИх пРОстРАНстВ И ИсслЕДУЕтсь МНОжЕстВО пРЕДЕльНы х тОЧЕк пРЕОБРАжОВАН НОИ пОслЕДОВАтЕльНОстИ. В ОсНОВНОМ ДАНы ДОкАж АтЕльстВА РЕжУльтАтОВ, АНОНсИР ОВАННых В РАБОтЕ [3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号