首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat-shock response is a cellular defence mechanism against environmental stresses that is evolutionarily conserved from bacteria to man. Numerous reports demonstrate the beneficial effects of heat-shock protein induction on cell survival under toxic or oxidative stress, e.g., in cardiac and cerebral ischemia or prior to organ transplantation. However, there is little data on the effects of heat treatment on damage caused by UV irradiation. Applying three independent techniques, we have tested the influence of thermal pretreatment of skin cells (1 h, 43 degrees C) on the initial extent of UV-B-induced DNA damage and its subsequent repair. For cultured human epidermal keratinocytes and dermal fibroblasts we can show reduced levels of nucleotide-excision-repair-associated DNA strand incision in the comet assay. Moreover, immunostaining and flow cytometric quantitation of thymidine dimers immediately and one day after irradiation, respectively, reveal that the initial DNA damage is not (keratinocytes) or only moderately (fibroblasts) lower in heat-shocked cells as compared to untreated controls. However, excision repair of dimers is significantly attenuated during the first 24 h in both cell types. Furthermore, using a modified host-cell reactivation assay, we are able to demonstrate that repair of UV-B-damaged plasmid DNA is lower if the transfected cells are previously heat shocked. In summary, heat treatment (1 h, 43 degrees C) inducing heat-shock proteins reduces nucleotide excision repair of UV-B-mediated DNA lesions in fibroblasts and keratinocytes during the following 24 h. This is not necessarily caused by elevated heat-shock protein levels themselves. Possibly the direct thermal damage of repair enzymes is more severe than the potential protective effects of heat-shock proteins.  相似文献   

2.
Chronic exposure of human skin to solar UV radiation leads to serious dermal damages, a hallmark of photoaging. In vivo, acute UV radiation has been shown previously to induce various matrix-degrading proteases. Among them, matrix metalloproteinase-1 (MMP-1) has been suggested to be involved in skin photodamage. The purpose of this study was to investigate the effects of solar-simulated radiation (SSR) on MMP-1 production in normal human skin cells. SSR exposure of human skin reconstructed in vitro comprising both a differentiated epidermis and a fibroblast-populated dermal equivalent led to an increase in MMP-1 production, which was abolished when epidermis was removed immediately after SSR exposure. In addition, SSR exposure of differentiated keratinocytes grown on an acellular collagen gel did not induce MMP-1 production. Experiments on cell cultures grown on plastic confirmed that keratinocytes failed, in contrast with fibroblasts, to produce MMP-1 in response to SSR exposure. However, when conditioned medium from SSR-exposed keratinocytes was added to human fibroblasts in culture, MMP-1 production was induced. Altogether, these data show that MMP-1 production observed after SSR exposure involved the release of soluble epidermal factors, which could modulate its production by dermal fibroblasts.  相似文献   

3.
Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280–320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB‐induced damage. To investigate these processes, established two and three‐dimensional culture models were utilized to study the impact of fibroblast–keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase‐3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast‐produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation‐induced damage.  相似文献   

4.
DNA repair plays a central role in the cellular response to UV. In this work we have studied the response of skin cells (i.e. fibroblasts and keratinocytes) from the same or from different individuals after both ultraviolet-B (UV-B) and ultraviolet-C (UV-C) irradiations using the comet assay to characterize the specific cellular response to UV-induced DNA damage. Cells were irradiated with increasing doses of UV-B or UV-C. To study the UV dose dependency of initial steps of DNA repair, namely recognition and incision at DNA damage level, the comet assay was performed, under alkaline conditions, 60 min after UV irradiation to allow detection of DNA strand breaks. Comparative analysis of tail moment values after UV exposure of cells from the same or from different individuals showed interexperimental and interindividual variations, implying that repeated assays are necessary to characterize the individual DNA repair capacity. With increasing doses of UV in keratinocytes, a plateau was rapidly reached after irradiation, whereas in fibroblasts a linear dose-effect relationship was observed. These interindividual variations associated with cellular specificity in DNA response may be of significance in skin cell and individual susceptibility toward UV-induced carcinogenesis.  相似文献   

5.
Abstract— Activation of expression of the heme oxygenase (HO) gene appears to be involved in a cellular defense system in mammalian cells. We now demonstrate that while HO-1 mRNA levels are strongly inducible in dermal fibroblasts they are barely inducible in human epidermal keratinocytes following oxidative stress (UVA radiation and hydrogen peroxide). Paralleling this result was the observation that HO-2 mRNA levels were low in dermal fibroblasts but were high in epidermal keratinocytes. In neither case was the HO-2 gene inducible. The expression of the two HO genes led to enzymatic activity in both types of skin cells with an approximately 2.5-fold higher level of enzymatic activity present in keratinocytes compared with fibroblasts derived from the same biopsy. In addition, ferritin levels, which have been found to be augmented via the HO-dependent release of iron from endogenous heme sources, were two- to three-fold higher in keratinocytes compared with matching fibroblasts. This higher ferritin pool would result in an enhancement of cellular iron sequestering capacity that may confer increased resistance to oxidative stress. Indeed, keratinocytes showed less UVA radiation-dependent cell membrane damage than fibroblasts. These results are consistent with the hypothesis that HO expression in human epidermis and dermis is related to cellular defense mechanisms that operate in human skin.  相似文献   

6.
UVA can penetrate dermis and cause functional damage of dermal fibroblasts leading photoaging. Ginseng is a widely used traditional Chinese medicine for skin aging. However, its effects on skin photoaging induced by UVA are not clear. In this study, we isolated ginseng proteins (GP), with molecular weights of 27 kDa and 13 kDa, and found that they alleviated the inhibitory effects of UVA on cell viability and increased percentage of NIH-3T3 fibroblasts in the S phase of cells cycle. GP also improved cell contraction ability, increased the expression and secretion of CoL-I, similar to MAPK phosphorylation inhibitors and reduced expression and secretion of MMP-1, MMP-2 and MMP-9 as well as the enzyme activities of MMP-2 and MMP-9. They reduced ROS content, DNA damage and 8-OHdG content, as well as the protein expression of p53, p21 and p16. The levels of p-ERK, p-p38 and p-JNK, p-c-Fos and p-c-Jun proteins were decreased by GP. Inactivated GP did not inhibit the cellular activity and expression and secretion of CoL-I irradiated by UVA. The results showed that GP can improve cell viability and contractile function by inhibiting DNA damage and collagen degradation to inhibit the photoaging effects of skin dermal cells caused by UVA.  相似文献   

7.
Abstract— Glutathione depletion of cultured human skin fibroblasts by treatment with buthionine-S,R-sulfoximine (BSO) sensitises them to radiation at a series of defined wavelengths throughout the solar UV range. We now show that there is a close quantitative correlation between cellular glutathione content (as depleted by BSO) and sensitivity to radiation at 365 nm. A weaker correlation is observed when cells are depleted of glutathione using diethylmaleimide. Both fibroblasts and epidermal keratinocytes derived from the same foreskin biopsy are sensitised to radiation at 313 nm by glutathione depletion. However, the keratinocytes are sensitised to a much lesser extent, an observation which agrees quantitatively with the higher residual levels of cellular glutathione remaining after maximum depletion by BSO (approximately 25% for the keratinocytes vs less than 5% for the fibroblasts). At low to intermediate fluence levels, 10 mM cysteamine present during irradiation at 302 nm is able to almost completely reverse the sensitising effects of glutathione depletion suggesting that the endogenous thiol protects against radiation at this wavelength by a free radical scavenging mechanism. At 313 nm, the sensitisation is not reversed by cysteamine suggesting that glutathione plays a more specific role in protection against radiation at longer wavelengths. Xeroderma pigmentosum group A fibroblasts (excision deficient) are also sensitised to radiation at 313 and 365 nm by depletion of glutathione but since the sensitization is less than that observed for the normal strain, we cannot conclude that glutathione protects against a sector of DNA damage susceptible to excision repair. The results provide further evidence that endogenous glutathione is involved in protecting human skin cells against a wide range of solar radiation damage and suggest that while free radical scavenging is involved at the shortest wavelength (302 nm) tested, a more specific role of glutathione is involved in protection against radiation at longer wavelengths.  相似文献   

8.
Iron and/or ferritin accumulation are known to occur under pathological conditions in many inflammatory skin diseases or in human skin chronically exposed to UV light. Under such conditions, ferritin is believed to play an effective protective role in accommodating and 'deactivating' excess 'free' iron produced by the inflammatory process or the UV illumination. The present study compares the relationship between ferritin over-expression and effects of an oxidative stress induced chemically by tert-butyl hydroperoxide or photochemically by UV-A radiation. As shown by immunoassay, cultured MRC 5 and HS 68 fibroblasts treated for at least one day with transferrin or overnight with non-toxic concentrations of the ferric nitrilotriacetate complex express up to 10 times more ferritin than untreated cells, whereas a five-fold increase is obtained with NCTC 2544 keratinocytes. In all cases a parallel increase in soluble cellular iron is measured by inductive plasma emission spectroscopy. The superoxide dismutase and catalase activities and total glutathione levels are not modified by the iron treatment, whereas a transient increase in the Se-dependent glutathione peroxidase activity of keratinocytes is observed after a short incubation with the iron complex. In keratinocytes and fibroblasts, ferritin over-expression after iron treatment markedly inhibits lipid peroxidation but, paradoxically, not the mortality induced by tert-butyl hydroperoxide. In contrast, this excess ferritin does not protect cells from both the peroxidation and mortality induced by moderate doses (30 J/cm2) of UV-A radiation. As a consequence, protection against oxidative damage by excess ferritin synthesis clearly depends on the nature of the oxidative stress on cell targets and it seems to be of lesser importance in the case of photochemically induced oxidation.  相似文献   

9.
Skin is the largest organ of humans. Overexposure to ultraviolet (UV) is the primary environmental factor that causes skin damage. The compound, (-)-loliode, isolated from the brown seaweed Sargassum horneri, showed strong antioxidant and anti-inflammatory activities in in vitro and in vivo models. To further explore the potential of (-)-loliode in cosmetics, in the present study, we investigated the photoprotective effect of (-)-loliode in vitro in skin cells and in vivo in zebrafish. The results indicated that (-)-loliode significantly reduced intracellular reactive oxygen species (ROS) level, improved cell viability, and suppressed apoptosis of UVB-irradiated human keratinocytes. In addition, (-)-loliode remarkably attenuated oxidative damage, improved collagen synthesis, and inhibited matrix metalloproteinases expression in UVB-irradiated human dermal fibroblasts. Furthermore, the in vivo test demonstrated that (-)-loliode effectively and dose-dependently suppressed UVB-induced zebrafish damage displayed in decreasing the levels of ROS, nitric oxide, lipid peroxidation, and cell death in UVB-irradiated zebrafish. These results indicate that (-)-loliode possesses strong photoprotective activities and suggest (-)-loliode may an ideal ingredient in the pharmaceutical and cosmeceutical industries.  相似文献   

10.
Green tea chemoprevention has been a focus of recent research, as a polyphenolic fraction from green tea (GTP) has been suggested to prevent UV radiation-induced skin cancer. Recently, it was demonstrated that GTP reduced the risk for skin cancer in a murine photocarcinogenesis model. This was accompanied by a reduction in UV-induced DNA damage. These effects appeared to be mediated via interleukin (IL)-12, which was previously shown to induce DNA repair. Therefore, we studied whether GTP induction of IL-12 and DNA repair could also be observed in human cells. KB cells and normal human keratinocytes were exposed to GTP 5 h before and after UVB. UVB-induced apoptosis was reduced in UVB-exposed cells treated with GTP. GTP induced the secretion of IL-12 in keratinocytes. The reduction in UV-induced cell death by GTP was almost completely reversed upon addition of an anti-IL-12-antibody, indicating that the reduction of UV-induced cell death by GTP is mediated via IL-12. The ability of IL-12 to reduce DNA damage and sunburn cells was confirmed in "human living skin equivalent" models. Hence the previously reported UV-protective effects of GTP appear to be mediated in human cells via IL-12, most likely through induction of DNA repair.  相似文献   

11.
Xeroderma pigmentosum (XP) is a rare, recessive, photosensitive and cancer-prone syndrome, the biochemical hallmark of which is a defect in nucleotide excision repair of ultraviolet (UV)-induced mutagenic lesions. After isolation and amplification of several strains of XP-C keratinocytes and fibroblasts, a three-dimensional skin model in vitro comprising both epidermis and a dermal equivalent could be obtained. XP dermal tissues and XP epidermis displayed specific morphological and biochemical characteristics compared with tissues obtained with normal cells. One of the major features was the formation of epidermal invaginations into the dermal equivalent. After UV-B exposure, and contrary to repair of DNA lesions in normal cells, the XP model displayed repair deficiency with long-lasting persistence of UV-induced DNA damage and p53 positive nuclei. Recent data obtained after genetic correction leading to functional XPC gene in keratinocytes and fibroblasts revealed that several abnormal features could be normalized. In conclusion, reconstruction of XP skin in vitro provides a very promising system to study genetic hyperphotosensitivity and opens a rational perspective to XP tissue therapy.  相似文献   

12.
Oxidative DNA damage has been implicated in some of the biological properties of UVA but so far not in the acute photosensitivity or cellular sensitivity. In contrast to pyrimidine dimers, oxidative DNA damage is predominantly processed by base excision repair (BER). In order to further clarify the role of oxidative DNA damage and its repair in the acute cellular response to UV light, we studied UVA1 and UVB sensitivities in three different cell model systems with modified BER. 8-Oxoguanine-DNA-glycosylase 1-/- (OGG1-/-) mouse embryonal fibroblasts and human fibroblasts in which BER was inhibited by incubation with methoxyamine were hypersensitive to UVA1, in particular to low doses. This hypersensitivity could be partially corrected by reexpression of OGG1 in OGG1-/- cells. The Chinese hamster ovary (CHO) cells with upregulated AP-endonuclease 1 exhibited reduced UVA1 sensitivity. UVB sensitivity was not altered in any of the cell models. These results indicate that DNA damage, in particular oxidative DNA damage, contributes to cellular UVA1 sensitivity and underline a pivotal role of its repair in the cellular responses to UVA1.  相似文献   

13.
We previously demonstrated that CD1d knockout mice were resistant to ultraviolet (UV)-induced immunosuppression. Because immune suppression is a critical factor in the development of UV-induced skin cancers, we investigated the response of wild type (WT) and CD1d-/- mice to UV carcinogenesis. We found that although 100% of WT mice developed skin tumors after 45 weeks of UV irradiation, only 60% of CD1d-/- mice developed skin tumors. To investigate the mechanisms involved in the resistance of CD1d-/- mice to UV-induced carcinogenesis, we determined the time course and kinetics of keratinocyte cell death after UV irradiation. After acute UV exposure, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL)-positive keratinocytes were eliminated from the skin of WT mice by 72 h post-UV, but they still persisted until 96 h in CD1d-/- mice. The kinetics of p53 protein expression closely followed the kinetics of apoptotic cell death. Chronic UV irradiation resulted in induction of a significantly higher number of apoptotic keratinocytes in CD1d-/- than WT mice. In addition, epidermis and dermis from chronically UV-irradiated CD1d-/- mice harbored significantly fewer p53 mutations than WT mice. These results indicate that the resistance of CD1d-/- mice to UV carcinogenesis may be due to increased cell death and elimination of keratinocytes and fibroblasts containing DNA damage and p53 mutations.  相似文献   

14.
The thiol N-acetyl-L-cysteine (NAC) is a source of cysteine for the synthesis of the endogenous antioxidant glutathione (GSH) which is depleted by ultraviolet radiation. It is also associated with the scavenging of reactive oxygen species (ROS). In this study the effects of NAC were examined in cultured human fibroblasts during prolonged exposure to ultraviolet B (UVB), ultraviolet A (UVA) and visible irradiation (280-700 nm), delivered by a 150 W xenon-arc lamp. The alkaline comet assay was used to assess the DNA damage in individual cells. It was found that incubating skin and lung fibroblasts at 37 degrees C for 1 h with an optimal 6 mM NAC supplement prior to light exposure, significantly reduced the level of DNA damage in both cell types, however, the skin fibroblasts were less sensitive to xenon-arc lamp irradiation than lung fibroblasts. NAC incubation resulted in an initial delay in DNA damage when the cells were irradiated. There was also a significant reduction in the overall levels of DNA damage observed with continued irradiation. NAC significantly reduced the DNA damage produced in lung fibroblasts depleted of normal GSH protection by the glutamylcysteinyl synthetase inhibitor, L-buthionine-[S,R]-sulfoximine. Although the specific mechanism of NAC protection has not yet been elucidated, these results support the hypothesis that NAC may protect the cells directly, by scavenging ROS induced by UVA and visible radiation, and indirectly by donating cysteine for GSH synthesis.  相似文献   

15.
16.
Fibronectin and collagens are major constituents of the cell matrix of fibroblasts. Fibronectin is a 220,000 dalton glycoprotein that mediates a variety of adhesive functions of cells examined in vitro. Fibronectin is secreted in a soluble form and interacts with collagen to form extracellular filaments. Fibronectin and procollagen type I were localized using the peroxidase anti-peroxidase method. Under standard culture conditions, fibronectin and procollagen were localized to non-periodic 10 nm extracellular fibrils, the cell membrane and plasma membrane vesicles. Ascorbate treatment of cells leads to a new larger fibril with a diameter of approximately 40 nm. Antibodies to fibronectin and procollagen I react to these native collagen fibrils with an axial periodicity of approximately 70 nm. Fibronectin is clearly associated with native collagen fibrils produced by ascorbate treated cells and there is an asymetric distribution or segregation of fibronectin on these collagen fibrils with a 70 nm axial repeat.  相似文献   

17.
Phototherapy with broadband UVB is an effective treatment for inflammatory dermatoses. A newly developed fluorescent UVB lamp (Philips TL01) that emits a narrowband UVB around 311 nm was shown to be superior for the phototherapy of psoriasis. In order to contribute to the knowledge about the carcinogenic potential of this UVB source, we measured the DNA damage in lymphoblasts and keratinocytes induced by narrowband UVB and compared it with that by conventional broadband UVB using the single cell gel electrophoresis (comet as-say). At equal doses, broadband UVB produced more DNA damage than narrowband UVB. However, in phototherapy of psoriasis, up to 10-fold higher doses are used with TLO1. When therapeutically equivalent doses were compared (10-fold correction for narrowband UVB), we found only slight differences in the amount of DNA damage produced by broadband and narrowband UVB. This supports the already existing evidence that for phototherapy narrowband UVB is not more carcinogenic than broadband UVB.  相似文献   

18.
To shed light on the multistep process of squamous cell carcinoma development and the underlying pathologic mechanisms, we performed comparative proteome analysis of keratinocytes, keratinocytes stimulated with Il‐1beta, and A431 epidermoid carcinoma cells. Fractionation of the cells into supernatant, nucleus, and cytoplasm was followed by protein separation, proteolytic digest, and nano‐LC separation, and fragmentation using an ion trap mass spectrometer. Specific bioinformatics tools were used to generate a list of keratinocyte‐specific proteins. Ninety percent of these proteins were found to be upregulated in keratinocytes versus the A431 cells. Classification of the identified proteins by biologic function and gene set enrichment analysis revealed that keratinocytes produced more proteins involved in cell differentiation, cell adhesion, cell junction, calcium ion, calmodulin binding, cytoskeleton organization, and cytokinesis, whereas A431 produced more proteins involved in cell cycle checkpoint, cell cycle process, RNA processing and transport, DNA damage and repair, RNA and DNA binding, and chromatin remodeling. The protein signatures of A431 and normal keratinocytes treated with IL‐1beta showed marked similarity, confirming that inflammation is an important step in malignant transformation in nonmelanoma skin cancer. Thus, proteome profiling and bioinformatic processing may support the understanding of the underlying mechanisms, with the potential to facilitate development of early biomarkers and patient‐tailored therapy.  相似文献   

19.
(-)-Epicatechin-3-gallate (ECG) is a polyphenolic compound similar to (-)-epigallocatechin-3-gallate (EGCG) which is abundant in green tea. Numerous workers have proposed that EGCG protects epidermal cells against UVB-induced damage. However, little has been known about whether ECG protects keratinocytes against UVB-induced damage. We decided to investigate the protective effects and underlying mechanisms of ECG on UVB-induced damage. Cell viability was determined by the MTT assay. Activation of ERK1/2, p38 and JNK was analyzed by Western blotting. Intracellular H2O2 production and DNA content was analyzed by flow cytometry. Lipid peroxidation was assayed by colorimetry. In our study, we found that ECG dose-dependently attenuated UVB-induced keratinocyte death. Moreover, ECG markedly inhibited UVB-induced cell membrane lipid peroxidation and H2O2 generation in keratinocytes, suggesting that ECG can act as a free radical scavenger when keratinocytes were photodamaged. In parallel, H2O2-induced the activation of ERK1/2, p38 and JNK in keratinocytes could be inhibited by ECG. UVB-induced pre-G1 arrest leading to apoptotic changes of keratinocytes were blocked by ECG. Taken together, we provide here evidence that ECG protects keratinocytes from UVB-induced photodamage and H2O2-induced oxidative stress, possibly through inhibition of the activation of ERK1/2, p38 and JNK and/or scavenging of free radicals.  相似文献   

20.
Two tetrasubstituted (RLP024 and RLP040) and one monosubstituted (MRLP101) Zn-phthalocyanines were readily accumulated by three skin-derived cell lines (HT-1080 transformed human fibroblasts, 3T3 mouse embryo fibroblasts and HaCaT human keratinocytes) upon 1 h-incubation with 0.5-5 microM phthalocyanine concentrations. The affinity was markedly larger for the tetra- as compared with the mono-substituted phthalocyanine, even though smaller phthalocyanine amounts were generally recovered from keratinocytes. As a consequence, the two tetra-substituted phthalocyanines exhibited a higher phototoxicity against all the three cell lines. Typically, the cell survival decreased by at least 80% after 1 min irradiation with 600-700 nm light at a fluence-rate of 50 mW/cm2 in the presence of 5 microM phthalocyanine. Fluorescence microscopy and caspase-3 activation studies indicate that cell death of fibroblasts largely occurred by a random-necrotic process while the keratinocytes underwent cell death predominantly via apoptosis in spite of a very similar pattern of subcellular distribution of the phthalocyanines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号