首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
含噻吩的窄带隙共轭聚合物类太阳能电池材料因其良好的稳定性和可加工性,已成为新型太阳能电池的研究热点。本论文主要介绍了用于太阳能电池的窄带隙共轭聚合物研究进展,按其结构特征分为烷基/烷氧基取代聚噻吩、含苯基聚噻吩、基于噻吩并吡嗪的共聚物、基于噻吩并噻唑的共聚物、基于噻吩并吩噻嗪的共聚物、基于烷基芴的共聚物以及其它种类的窄带隙的共轭聚合物,并对它们的结构特点、光学带隙、合成方法进行了归纳与总结。本文最后简要介绍了该研究领域目前所面临的一些问题,同时讨论了该类材料在此领域今后的发展趋势。  相似文献   

2.
以三(二亚苄基丙酮)二钯(Pd_2(dba)_3)为催化剂,三甲苯基磷(P(o-tol)_3)为配体,4,3'-十二烷基-2,2'-联二噻吩(M1)和2,8-二溴-5-(2-己基癸基)苯并三噻吩(M2)为单体,采用Stille交叉偶联反应,合成了基于苯并三噻吩和联二噻吩单元的共轭聚合物(PBTT)。采用热重分析、紫外-可见分光光度计及电化学分析分别研究了聚合物PBTT的热性能、光学性能和电化学性能。结果表明:聚合物PBTT具有优异的热稳定性和低的最高占有轨道能级(HOMO);聚合物薄膜最大吸收峰位于469 nm,光学能带隙为2.10 eV;将聚合物与[6,6]-苯基-C_(61)-丁酸甲酯(PC_(61)1BM)共混材料作为活性层制作了本体异质结构太阳能电池器件,在模拟太阳光源AM 1.5 G 100 mW/cm~2照射条件下,该器件获得了高达1.00 V的开路电压,初步的能量转化效率为0.43%。  相似文献   

3.
二噻吩[3,2-b:2′,3′-d]并吡咯(Dithieno[3,2-b:2′,3′-d]pyrrole,DTP)分别与3种受体单元聚合得到聚合物P1~P3,受体单元分别为:吡咯并吡咯二酮(DPP)、二噻吩苯并噁二唑(DTBO)和喹喔啉衍生物(TQ).研究表明,3种聚合物都有较窄的带隙(P1:1.23 e V,P2:1.51 e V,P3:1.50 e V),有利于活性层材料对太阳光的吸收,其中P1获得了最宽的吸收(近1000 nm).将P1~P3与PC71BM共混制备光伏器件,当给受体比例为1∶3时,基于P1的光伏器件短路电流密度(short-circuit current density,JSC)为15.82 m A/cm~2,开路电压(open-circuit voltage,VOC)为0.38 V,能量转化效率(power conversion efficiency,PCE)达到3.33%,为3种聚合物中最高的效率.对于聚合物P2和P3,在给受体比例为1∶2时,光伏性能最好,此时P2与P3的PCE值分别为1.20%和1.37%,导致较低光电转换效率的因素是短路电流密度JSC(P2:9.70 m A/cm~2,P3:9.21 m A/cm~2)和开路电压VOC(约0.3 V)过低.  相似文献   

4.
设计并通过Stille缩聚方法合成了一种基于四氟苯和4,8-双(5-(2-乙基己基)噻吩-2-基)-苯并[1,2-b:4,5-b’]二噻吩单元的推拉电子型宽带隙聚合物(PBDT4F)作为聚合物太阳能电池的给体材料。用核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。结果表明:PBDT4F对400~600 nm短波长光具有强吸收能力,并且具有低的最高占有轨道(HOMO)能级和适合的最低未占有轨道(LUMO)能级。基于PBDT4F为给体、有机小分子(5Z,5’Z)-5,5’-((7,7’-(4,4,9,9-四辛基-4,9-二氢-s-茚并[1,2-b:5,6-b’]二噻吩-2,7-二基)双(苯并[c][1,2,5]噻二唑-7,4-二基)双(亚甲叉))双(3-乙基-2-硫代-4-噻唑烷二酮)(O-IDTBR)为受体的共混活性层的光伏器件取得了0.986 V的开路电压和2.58%的光电转化效率。  相似文献   

5.
近年来为获得有机聚合物太阳能电池更高的能量转换效率,越来越多的活性层材料被设计合成出来,尤其是给体材料。其中,基于给体单元苯并二噻吩(BDT)的D-A型窄带隙共轭聚合物更是多次刷新了有机聚合物太阳能电池效率的最高记录,目前达10.6%。本文探讨了基于苯并二噻吩的D-A型窄带隙共轭聚合物材料结构及其应用在太阳能电池中的性能参数关系,从提高开路电压、短路电流和填充因子三个方面总结出了提高基于BDT共轭聚合物太阳能电池能量转换效率的方法。  相似文献   

6.
杨正龙  卜弋龙  陈秋云 《化学进展》2011,23(12):2607-2616
太阳能电池能够将太阳能直接转化为电能,是利用太阳能资源的一种非常有效的手段。聚合物太阳能电池因成本低、重量轻、制备方便和可制成柔性器件的优点,已经成为该领域的研究热点之一。基于窄带隙共轭聚合物给体/富勒烯受体复合材料体系制得的太阳能电池的最高转换效率已经达到8.3%,而寻找性能更优异的聚合物给体材料是进一步提高光伏性能的关键因素。本文综述了近几年关于高效率窄带隙聚合物太阳能电池给体材料的研究进展,着重介绍了苯并噻二唑类共聚物、稠环噻吩类共聚物和吡嗪类共聚物等窄带隙聚合物给体材料体系及相应光伏器件的性能,分析了各种材料的优点和不足,并对今后这一领域的发展做了展望。  相似文献   

7.
近几年,苯并[1,2-b:4,5-b']二呋喃(benzo[1,2-b:4,5-b']difuran,BDF)由于其平面性好、电荷迁移率高、溶解性好、生产来源丰富、可生物降解等优点,得到了越来越多的关注,并被广泛应用于有机光伏分子的设计中.目前所报道的基于该共轭单元的有机光伏器件(OPV)的光电转化效率(PCE)最高已达到了9.43%,展示了巨大的应用前景.系统地介绍了BDF共轭单元的制备路线及基于BDF单元的光伏材料的最新研究进展,重点讨论了基于BDF单元给体材料结构的变化对光伏性能的影响.  相似文献   

8.
何有军  李永舫 《化学进展》2009,21(11):2303-2318
聚合物太阳电池由共轭聚合物给体和可溶性富勒烯衍生物受体的共混膜夹在ITO透光电极和金属电极之间所组成,具有结构简单、成本低、重量轻和可制成柔性器件等突出优点,近年来受到广泛关注。聚合物太阳电池中的给体和受体光伏材料是决定器件性能的关键。本文综述了共轭聚合物给体和富勒烯受体光伏材料的最新研究进展,对共轭聚合物受体材料和给体-受体双缆型共轭聚合物光伏材料的研究进展也进行了简要介绍。在共轭聚合物给体材料中对聚噻吩衍生物以及含有苯并噻二唑的窄带隙D-A共聚物进行了重点介绍。  相似文献   

9.
通过Suzuki偶联反应合成了三种多支化p-n结构窄带隙材料P1, P2和P3. 通过1H NMR, 13C NMR, GC-MS/MALDI-TOF等表征了其化学结构, 并研究了其光物理性质、热力学性质、电化学性质及其电子结构与光电性能等. 结果表明这三种星型分子具有溶解性好、能隙窄、吸收光谱宽及热稳定性高等特点.  相似文献   

10.
以六羰基钨[W(CO)6]为催化剂, 合成了聚吲哚芴(P1)、 聚梯型四苯(P2)、 聚梯型五苯(P3)和小分子9-联吲哚芴烯(S1).该类聚合物的重复单元含有联芴烯结构, 通过芴9位的双键连接. 光学和电化学等实验结果表明, 聚合物无荧光发射, 是一类窄带隙的共轭聚合物, 其中聚合物P1薄膜的紫外吸收值最大波长为710 nm.  相似文献   

11.
一类新型的含4-叔丁基环己基和烯烃共轭结构的双苯并噻唑类聚合物PBTs III1,2由1,1’-双(4-氨基-3-巯基苯基)-4-叔丁基环己烷二盐酸盐(BAMPBCH?2HCl)与烯烃二元酸经过缩聚反应制备得到。聚合物的结构都经过了红外(IR)、核磁(NMR)、元素分析(EA)的表征。4-叔丁基环己基的引入提高了此类聚合物的溶解性并保持了较好的热稳定性,失重10%的温度在419 oC以上。相比聚苯撑苯并双噻唑(PBZT),PBTs III1,2的紫外吸收波长发生了蓝移,相对聚2,2’-对苯撑-6,6’-(4-叔丁基)环己基双苯并噻唑(PBT)则发生了红移,光学能带隙分别为2.56eV和2.53eV,大侧基和烯烃结构的引入扩大了苯并噻唑类聚合物光学能带隙的可调范围。PBTs III1,2的荧光发射波长较PBT发生了红移,大侧基的引入降低了固态时聚合物分子链的聚集程度。顺磁共振(EPR)的结果表明,PBTs III1,2都有明显的顺磁共振信号,顺磁中心是它们本身所固有的。  相似文献   

12.
13.
一种新型低带隙共轭聚合物的合成及其光学性质   总被引:2,自引:0,他引:2  
刘中义  李彦军  黄鹏程 《化学学报》2008,66(8):999-1002
在钯催化剂作用下, 通过4,7-二(5-溴-2-噻吩基)[2,1,3]苯并噻二唑与2,5-二乙炔基-3-辛基噻吩的偶联反应, 合成了一种新的共轭高分子聚4,7-二(2-噻吩基)苯并噻二唑-3-辛基噻吩二炔(PTE-DTBT). 通过紫外可见吸收光谱及荧光光谱对其光学性质进行了研究. 紫外-可见吸收谱结果表明, PTE-DTBT的固体膜光学带隙为1.71 eV; 电化学测试其带隙为1.88 eV. TiO2/PTE-DTBT共混固体膜的荧光发射谱结果表明电子供体PTE-DTBT分子与电子受体TiO2分子间存在有效的电子转移.  相似文献   

14.
采用Stille交叉偶联反应,合成了基于6-烷基吡咯[3,4-d]哒嗪-5,7-二酮(PPD)与吡咯并吡咯二酮(DPP)结构单元的受体-π-受体(A_1-π-A_2)型共轭聚合物(PPPD-DPP)。采用热重分析仪、紫外分光光度计、电化学工作站等表征了聚合物PPPD-DPP的性能,系统地研究了聚合物的热性能、光物理性能、电化学性能及晶体管性能。结果表明:聚合物PPPD-DPP具有良好的热稳定性,热分解温度达到376℃;薄膜的最大吸收峰位于702nm,光学能带隙为1.27eV;有较低的最高占据分子轨道能级(HOMO,-5.23eV)。基于PPPD-DPP的有机薄膜晶体管(OTFTs)器件在真空中显示出双极性传输特性,最高电子和空穴迁移率分别为0.030 cm~2/(V·s)和0.054cm~2/(V·s),在空气中PPPD-DPP器件则表现出明显的p型传输特性,空穴迁移率提升至0.121cm~2/(V·s)。  相似文献   

15.
有机光伏技术为太阳能的有效利用提供了一条重要途径。有机太阳能电池因制造成本低廉、材料质量轻、加工性能好、易于携带等优势而备受关注。提高有机太阳能电池的光电转换效率是目前乃至未来的研究重点。设计和合成适合的窄带隙的共轭聚合物是提高有机太阳能电池光电转化效率的核心。综述了近年来基于窄带隙的共轭聚合物的太阳能电池材料的设计、制备和器件性能研究进展,探讨了目前存在的亟待解决的关键基础问题和未来发展方向。  相似文献   

16.
利用微波协助的Stille缩合聚合反应方法合成了基于双噻吩苯并噻二唑和异靛单元的受体-受体聚合物HFTBT-DA865,并对其热稳定性、光物理性能、电化学性质和本体异质结太阳能电池性能进行了研究.该聚合物易溶于邻二氯苯和邻二甲苯等溶剂,具有优异的溶液加工性能.5%热分解温度为389℃,玻璃化转变温度为168℃,说明其具有较好的热稳定性能.对旋涂速度和温度进行优化,所得太阳能电池器件的光电转换效率为2.28%,开路电压为0.83 V,短路电流为-5.70 mA/cm^2,填充因子为48.9%.电化学性能和密度泛函理论估算结果表明,聚合物与受体材料PC71BM相近的最低未占分子轨道(LUMO)值及其平面性可能是影响光伏性质的重要因素.通过调控共聚单体或优化受体材料,器件性能可进一步提高.对受体-受体(A-A)类聚合物材料太阳能电池性能的研究表明,此类材料是一类潜在的聚合物太阳能电池材料.  相似文献   

17.
共轭聚合物发光和光伏材料研究进展   总被引:4,自引:1,他引:4  
聚合物光电功能材料与器件因其广阔的应用前景,1990年以年来吸引了世界各国学术界的广泛关注和兴趣.聚合物光电子器件主要包括聚合物电致发光二极管、聚合物场效应晶体管和聚合物太阳能电池等,其使用的关键材料是共轭聚合物光电子材料,包括共轭聚合物发光材料、场效应晶体管材料和光伏材料等.本文主要对共轭聚合物电致发光材料和光伏材料的研究进展进行综述,介绍了这些聚合物材料的种类、结构和性质以及在聚合物电致发光器件和聚合物太阳能电池中的应用.并讨论了当前共轭聚合物光电子材料中的关键科学问题和今后的发展方向.  相似文献   

18.
基于1,2,4-三氮唑衍生物的共轭聚合物的合成及其光伏性能   总被引:1,自引:0,他引:1  
李新炜  赵斌  曹镇财  沈平  谭松庭 《化学学报》2012,70(23):2433-2439
以缺电子的1,2,4-三氮唑衍生物作为拉电子结构单元(A), 以富电子的噻吩或苯并二噻吩衍生物作为推电子结构单元(D), 通过Stille偶联聚合的方法, 合成了三种主链型D-A(推-拉电子结构)的交替共聚物PT-TZ, PB-TZ和PB-TTZT. 不同富电子结构单元可使其聚合物表现出不同的光物理性能和光伏性能. 嵌入较多的噻吩单元, 可有效增大聚合物主链的共轭长度, 拓宽其吸收光谱, 因此, 聚合物PB-TTZT的光伏性能明显优于另外两种聚合物. 以三种聚合物分别作为给体材料, 以PC61BM作为受体材料, 制备了聚合物太阳能电池(PSCs), 其中, 基于PB-TTZT的PSCs器件在AM 1.5 G模拟太阳光条件下的光电转换效率为1.18%.  相似文献   

19.
在以CuCl和四甲基乙二胺(TMEDA)作为催化剂和邻二氯苯作溶剂条件下,以二-(4-乙炔苯基)-4-辛氧基苯胺(M1)和3, 6-双(乙炔基)-N-辛基咔唑(M2)作为单体,通过Glaser-Hay氧化偶联反应合成了含有咔唑和三苯胺结构单元的聚芳烃二乙炔共轭聚合物.采用红外光谱、核磁共振谱、热失重分析、紫外吸收光谱和荧光光谱等方法对聚合物进行结构表征与性能测试.所得到的聚合物都溶于普通的有机溶剂(如四氢呋喃、二氯甲烷、氯仿、甲苯等).结果表明,聚合物具有优异的热稳定性,热失重5 %时,分解温度在400℃以上;在光激发的条件下,聚合物在二氯甲烷溶液中发射蓝光.  相似文献   

20.
聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号