首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural stability of TiO and TiN under high pressure   总被引:1,自引:0,他引:1  
The high pressure phase transition and elastic behavior of Transition Metal Compounds (TiO and TiN) which crystallize in NaCl-structure have been investigated using the three body potential model (TBPM) approach. These interactions arise due to the electron-shell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions, and the short-range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressures, associated volume collapses, and elastic constants, all of which were found to be closer to available experimental data than other calculations. Thus, the TBPM approach promises to predict the phase transition pressure and pressure variations of elastic constants of Transition Metal compounds.   相似文献   

2.
In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.   相似文献   

3.
The high pressure phase transition of lanthanum monotellurides having NaCl-type (B1) structure have been studied using three-body interaction potential (TBIP) approach. The potential model consists of long-range Coulombic, three-body interaction forces, short-range overlap repulsive forces operative up to next nearest neighbor ions, van der Walls interactions and zero point energy effects. To understand the effect of pressure on elastic constant and their combinations, they have also been studied. The Born stability criterion was also found to be fulfiled in the present study. Our calculated results of phase transitions, volume collapses and elastic behavior of these monotellurides are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high-pressure studies.  相似文献   

4.
We have predicted the phase transition pressures and corresponding relative volume changes of EuO and EuS having NaCl-type structure under high pressure using three-body interaction potential (TBIP) approach. In addition, the conditions for relative stability in terms of modified Born criterion has been checked. Our calculated results of phase transitions, volume collapses and elastic behaviour of these compounds are found to be close to the experimental results. This shows that the inclusion of three-body interaction effects makes the present model suitable for high pressure studies.   相似文献   

5.
We have evolved an effective interionic interaction potential to investigate the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in II-VI [ZnSe] semiconductors. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are deduced. Keeping in mind that both of the ions are polarisable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients. The estimated value of the phase transition pressure (P t ) is higher than in the reported data, and the magnitude of the discontinuity in volume at the transition pressure is consistent with that data. The major volume discontinuity in the pressure-volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure.

The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the thermodynamic parameters such as the Debye temperature, the Gruneisen parameter, the thermal expansion coefficient and the compressibility. However, the inconsistency between the thermodynamic parameters as obtained from present model calculations and their experimental values is attributed to the fact that we have derived our expressions by assuming the overlap repulsion to be significant only up to the nearest second-neighbor ions, as well as neglecting thermal effects. It is thus argued that full analysis of the many physical interactions that are essential to binary semiconductors will lead to a consistent explanation of the structural and elastic properties of II–VI semiconductors.  相似文献   

6.
7.
We have investigated the pressure-induced phase transition of NiO and other structural properties using three-body potential approach. NiO undergoes phase transition from B1 (rocksalt) to B2 (CsCl) structure associated with a sudden collapse in volume showing first-order phase transition. A theoretical study of high pressure phase transition and elastic behaviour in transition metal compounds using a three-body potential caused by the electron shell deformation of the overlapping ion was carried out. The phase transition pressure and other properties predicted by our model is closer to the phase transition pressure predicted by Eto et al.   相似文献   

8.
Pressure induced structural phase transition of mono-antimonides of lanthanum, cerium, praseodymium and neodymium (LnSb, Ln=La, Ce, Pr and Nd) has been studied theoretically using an inter-ionic potential with modified ionic charge which parametrically includes the effect of Coulomb screening by the delocalized f electrons of rare earth (RE) ion. The anomalous structural properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Ln ion with the p orbital of neighbouring antimonide ion. All the four compounds are found to undergo from their initial NaCl (B1) phase to body centered tetragonal (BCT) phase at high pressure and agree well with the experimental results. The body centered tetragonal phase is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82. The transition pressure of LnSb compounds is observed to increase with decreasing lattice constant in NaCl phase. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-Sb) distances at high pressure. The calculated values of elastic constants are also reported.  相似文献   

9.
The behavior under pressure of the high spin–low spin phase transition in the coordination compounds containing 3d ions is analyzed using thermodynamic and microscopic approaches. For thermodynamic approach the mean field model with interactions between spin-crossover molecules is considered. Microscopic model takes into account the interaction of d electrons of the transition metal ions with full symmetric distortions of the ligands. The relationship of the thermodynamic interaction parameters with microscopic ones is installed and shown how the quantum–mechanical interactions form the cooperativity of the system. Within the microscopic model the temperature and pressure dependences of the high spin fraction in 2-D compounds {Fe(3-Fpy)2[M(CN)4]} (M=Pd, Pt) are simulated and microscopic parameters are evaluated. It is concluded that different experimental behaviors of the temperature and pressure induced spin transitions are determined by different variations of the inelastic and elastic energies under pressure, and vibrational component of the free energy drives the ST equally with electronic part.  相似文献   

10.
We have predicted high pressure structural behavior and elastic properties of alkaline earth tellurides (AETe; AE = Ca, Sr, Ba) by using two body interionic potential approach with modified ionic charge (Z m e). This method has been found quite satisfactory in case of the rare earth compounds. The equation of state curve, structural phase transition pressure from NaCl (B1) to CsCl (B2) phase and associated volume collapse at transition pressure of alkaline earth tellurides (AETe) obtained from this approach, so have been compared with experimentally measured data reveal good agreement. We have also investigated bulk modulus, second and third order elastic constants and pressure derivatives of second order elastic constants at ambient pressure which shows predominantly ionic nature of these compounds. First time, we have calculated the Poisson ratio, Young and Shear modulus of these compounds.   相似文献   

11.
We evolve an effective interatomic interaction potential with long range Coulomb interactions, Hafemeister and Flygare type short range overlap repulsion extended up to second neighbor ions and van der Waals interaction to discuss the pressure dependent first order phase transition, mechanical, elastic, and thermodynamical properties of NaCl-type (B1) to CsCl-type (B2) structure in lanthanum pnictides (LaY, Y = N, P, As, Sb, and Bi). Both charge transfer interactions and covalency effect apart from long range Coulomb are important in revealing the high-pressure structural phase transition, associated volume collapse, elastic and thermodynamical properties. By analyzing the aggregate elastic constants pressure (temperature) dependence, the rare earth lanthanum pnictides are mechanically stiffened as a consequence of bond compression and bond strengthening attributed to mechanical work hardening, thermally softening arose due to bond expansion and bond weakening due to lattice vibrations, brittle (ductile) nature at zero (increased) pressure and temperature dependent brittleness from room temperature to high temperatures. To our knowledge these are the first quantitative theoretical prediction of the pressure and temperature dependence of elastic and thermodynamical properties explicitly the mechanical stiffening, thermally softening, and brittle (ductile) nature of rare earth LaY (Y = N, P, As, Sb and Bi) pnictides and still awaits experimental confirmations.  相似文献   

12.
We have predicted the phase transition pressures and corresponding relative volume changes of two neodymium monopnictides (NdAs and NdSb) having NaCl-type structure at ambient conditions, using an improved interaction potential model (IIPM) approach. Both the compounds have been found to undergo from their initial NaCl(B1) phase to a body centered tetragonal (BCT) phase at high pressure. Our calculated results of phase transitions, volume collapses and elastic behavior of these compounds are found to be close to the experimental results. This shows that the inclusion of the three-body interaction and polarizability effect makes the present model suitable for high pressure studies.  相似文献   

13.
We have predicted the phase transition pressure (P T )and high pressure behavior of Zirconium and Niobium carbide (ZrC, NbC). The high pressure structural phase transitions in ZrC and NbC has been studied by using a two body inter-ionic potential model, which includes the Coulomb screening effect, due to the semi-metallic nature of these compounds. These transition metal carbides have been found to undergo NaCl (B1) to CsCl (B2)-type structural phase transition, at high pressure like other binary systems. We predict such structural transformation in ZrC and NbC at a pressure of 98GPa and 85GPa respectively. We have also predicted second order elastic constant and bulk modulus. The present theoretical work has been compared with the corresponding experimental data and prediction of LAPW and GGA and LDA theories.   相似文献   

14.
In this paper we focused on the structural and elastic properties of four transition metal mononitrides (TMNs) (M=Ti, Nb, Hf and Zr) by using realistic three body interaction potential (RTBIP) model, including the role of temperature. These TMN compounds have been found to undergo NaCl (B1) to CsCl (B2) phase transition, at a pressure quite high as compared to other binary systems. We successfully obtained the phase transition pressures and volume changes at different temperatures. In addition, elastic constants of TMNs at different temperatures are discussed. The present theoretical results have been compared with the available experimental data and predictions of LDA theory.  相似文献   

15.
The structural and elastic properties of praseodymium monochalcogenides (PrX: X = S, Se, Te) and monopnictides (PrY: Y = P, As, Sb, Bi) with NaCl-type structure have been investigated by using an interionic potential theory with necessary modification to include the effect of Coulomb screening due to the delocalized f-electrons of rare earth ion. The calculations are done at ambient as well as at high pressure. The structure of the high pressure phase of PrX compounds is CsCl-type while all the PrY compounds have been found to undergo from their initial NaCl-type structure to high pressure body centered tetragonal (BCT) structure, which can be seen as the distorted CsCl-type with c/a ratio ≈ 0.82–0.87. The calculated transition pressures are in good agreement with the experimental results. The elastic properties like second-order elastic constants for PrX, Y compounds are calculated for the first time. The nature of the bonding is also predicted by calculating the distance between the ions with the increasing pressure.  相似文献   

16.
To study phase transition and elastic properties at high pressures and high temperatures, we have developed a realistic interaction potential model (RIPZpe) including temperature effects. This model is completely suitable for explaining the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interaction (TBI) and zero point energy effects. The phase transition of KBr crystal at high pressure and high temperatures including the TBI is done for the first time. We have estimated the phase transition pressures, volume collapses and elastic behaviour at various high pressure and high temperatures by RIPZpe approach and the results found are well suited with available experimental data.  相似文献   

17.
A realistic interaction potential model approach by including temperature effects is developed to study phase transition, elastic properties and thermo-physical properties at very high pressures and temperatures. This approach is effectively able to explain the inter-atomic interaction involved at high temperature and high pressure as it includes the three-body interactions. Earlier works overlooked the three-body interactions at high temperature and pressures. Moreover, the phase-transition pressures of MgO crystal at high temperatures including the three-body interaction are computed for the first time. Elastic behavior, anisotropic factor and Debye temperature of MgO at high pressures and temperatures are also reported.  相似文献   

18.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

19.
运用基于赝势平面波基组的密度泛函程序VASP并结合Quantum ESPRESSO,Phonopy软件包对压力下VN的结构、力学性质、声子色散关系进行了第一性原理的研究.分别对NaCl型(B1),CsCl型(B2),WC型(Bh)三种构型的VN进行了计算,三种结构的体积能量曲线、焓压关系和声子谱表明在常压下六角WC结构与立方结构相比更稳定.随着压力增加VN由Bh结构到B1结构的相变点发生在30GPa左右,而B1结构到B2结构的相变点可能发生在150GPa左右.常压下三种结构的VN是力学稳定的,其弹性常数和弹性模量都有随压强的增大而增加的趋势,三者都是脆性材料.B1结构和B2结构坐标基矢方向上的杨氏模量数值与体对角线方向上的差距较大,体现出明显的各向异性.随压力的增加B1结构各向异性程度增大而B2结构各向异性程度减小  相似文献   

20.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号