首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic dose is defined as the area under the curve of sensitizer level plotted as a function of light dose. This is a photochemical definition of dose. We will show that this definition is useful in predicting photobiological response. The photodestruction of sensitizer during photodynamic therapy is shown to result in an upper limit on the photodynamic dose which can be delivered by an unlimited light dose. This limit results in the opportunity to make total photodynamic dose uniform to considerable depths (one to two centimeters). The existence of thresholds for permanent tissue damage allows protection of normal tissue from the large light doses required to achieve this limiting dose deep in the tissue. Higher sensitizer levels in the tumor permit tumor destruction while the normal tissues are protected. A clinical trial to determine the proper level of injected dose necessary for these results is required. This theory of photodynamic therapy (PDT) dosimetry is tested in the DBA-SMT experimental mouse tumor system. Combinations of drug and light which are not reciprocal but are nearly equal by this theory are shown to give equivalent tumor control at seven days post treatment. Reciprocal combinations of drug and light fail to give equivalent results when they ae selected using the theory to choose a combination where reciprocity should fail.  相似文献   

2.
Abstract— The dependence of photodynamic therapy (PDT) on changes in drug and light doses was determined in C3H/HeJ mice bearing the RIF tumor. Measurements of tumor clonogenicity were determined 24 h after PDT over a range of drug and light doses. Representative histological samples were prepared at each of these doses. Both the drug and light dose dependence experiments showed an exponential decrease in clonogenicity after an initial shoulder region. Reciprocity of drug and light dose was established from those clonogenicity curves. Histological examination of tumors gave information concerning the localization of gross damage within tumors. Increases of light dose in PDT were shown to extend the depth of necrosis within tumors. Increases of drug dose produced enlargements in the area of necrotic spots produced by PDT  相似文献   

3.
In an ideal world, photodynamic therapy (PDT) of abnormal tissue would reliably spare the surrounding normal tissue. Normal tissue responses set the limits for light and drug dosimetry. The threshold fluence for necrosis (TFN) was measured in normal skin following intravenous infusion with a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA) Verteporfin as a function of drug dose (0.25-2.0 mg/kg), wavelength of irradiation (458 and 690 nm) and time interval (0–5h) between drug administration and irradiation. The BPD-MA levels were measured in plasma and skin tissue to elucidate the relationship between TFN, drug kinetics and biodistribution. The PDT response of normal skin was highly reproducible. The TFN for 458 and 690 nm wavelengths was nearly identical and the estimated quantum efficiency for skin response was equal at these two wavelengths. Skin phototoxicity, quantified in terms of 1/ TFN, closely correlated with the plasma pharmacokinetics rather than the tissue pharmacokinetics and was quadratically dependent on the plasma drug concentration regardless of the administered drug dose or time interval between drug and light exposure. This study strongly suggests that noninvasive measurements of the circulating drug level at the time of light treatment will be important for setting optimal light dosimetry for PDT with liposomal BPD-MA, a vascular photosensitizer.  相似文献   

4.
TOOKAD (WST09) is a new, long-wavelength palladium bacteriopheophorbide photosensitizer that targets tissue vasculature. The cutaneous phototoxicity of TOOKAD was assessed in normal rat and pig animal models and in patients in a Phase-I trial of TOOKAD-mediated photodynamic therapy (PDT) for recurrent prostate cancer. Controlled skin exposures were administered using solar-simulated light at various times after drug administration. Two different spectral ranges were used. In the first, the UV portion of the spectrum was removed (UV(-)) because UV irradiation in nondrugged control animals produced an erythema response at incident energy densities (J/cm(2)) lower than those required to induce a PDT response. In the second, the full solar spectrum (UV(+)) was used, and the potentiation by the photosensitizer of the UV-mediated minimum erythema dose was assessed. Results showed that the PDT skin response was negligible at clinical drug doses of 2 mg/kg for any period after administration at light doses of 128 J/cm(2) in the animal models. In patients, there was no observed UV(-) skin response at doses of up to 2 mg/kg, drug-light intervals of 1-3 h or greater and light exposures up to 128 J/cm(2). At higher drug doses in the rat and pig models, the duration of skin phototoxicity was found to be approximately 3 h and less than 1 h, respectively. Using the full spectrum of solar-simulated light, the presence of TOOKAD did not measurably enhance the UV(+)-induced erythema in the rats, pigs or patients.  相似文献   

5.
This paper describes the photodynamic characteristics of the new near-infrared photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (mTHPBC or SQN400) in normal rat and mouse tissues. A rat liver model of photodynamic tissue necrosis was used to determine the in vivo action spectrum and the dose-response relationships of tissue destruction with drug and light doses. The effect of varying the light irradiance and the time interval between drug administration and light irradiation on the biological response was also measured in the rat liver model. Photobleaching of mTHPBC was measured and compared with that of its chlorine analog (mTHPC) in normal mouse skin and an implanted mouse colorectal tumor. The optimum wavelength for biological activation of mTHPBC in rat liver was 739 nm. mTHPBC was found to have a marked drug-dose threshold of around 0.6 mg kg-1 when liver tissue was irradiated 48 h after drug administration. Below this administered drug dose, irradiation, even at very high light doses, did not cause liver necrosis. At administered doses above the photodynamic threshold the effect of mTHPBC-PDT was directly proportional to the product of the drug and light doses. No difference in the extent of liver necrosis produced by mTHPBC was found on varying the light irradiance from 10 to 100 mW cm-2. The extent of liver necrosis was greatest when tissue was irradiated shortly after mTHPBC administration and necrosis was absent when irradiation was performed 72 h or later after drug administration, suggesting that the drug was rapidly cleared from the liver. In vivo photobleaching experiments in mice showed that the rate of bleaching of mTHPBC was approximately 20 times greater than that of mTHPC. It is argued that this greater rate of bleaching accounts for the higher photodynamic threshold and this could be exploited to enhance selective destruction of tissues which accumulate the photosensitizer.  相似文献   

6.
Ideal photosensitizers have long-wavelength absorption and strong tumor selectivity with rapid clearance from normal tissues. The telluroselenopyrylium dye 1 that absorbs light at 795 nm (epsilon = 285,000 M-1 cm-1) has a novel property that enhances the tumor specificity and normal tissue clearance. After intralesional injection to both tumors and surrounding skin, it disappeared from the normal skin of BALB/c mice faster than it did from subcutaneously implanted Colon 26 tumors, which resulted in therapeutic selectivity. In vivo reflectance spectroscopy showed that the half-life in tumor was about 50 min while in skin it was around 12 min. This phenomenon appears to be related to the pH differences in normal skin versus tumor, because the rates of drug hydrolysis in solution were shown to be sensitive to changes in pH. Inhibition of tumor regrowth following intratumoral photosensitizer administration depended on both light dose and drug dose, as well as the time interval between dye injection and irradiation; selectivity depended on the time interval. Although treatment parameters were not optimized efficacy was superior to systemic Photofrin under our standard conditions. We discuss how new, more optimal, photosensitizers can be designed that use rates of hydrolysis to exploit the differences in pH between normal tissue and tumor.  相似文献   

7.
We have previously shown that the efficacy of photodynamic therapy (PDT) using the photosensitizer meso-tetra-hydroxyphenyl-chlorin (mTHPC) correlated with plasma drug levels at the time of illumination rather than drug levels in human tumor xenografts or mouse skin. These results suggested that vascular-mediated effects could be important determinants of PDT response in vivo. In the present study we further investigated the relationship between PDT response, mTHPC pharmacokinetics and the localization and extent of vascular damage induced in human squamous cell carcinoma xenografts (HNXOE). Plasma levels of mTHPC decreased exponentially with time after injection, whereas tumor drug levels remained maximal for at least 48 h. At 3 h after administration mTHPC was localized in the blood vessels, whereas at later times it was distributed throughout the whole tumor. Illumination at 3 h after mTHPC, which resulted in 100% long-term tumor cure, led to a marked reduction of vascular perfusion and increased tumor hypoxia at 1 h after treatment. Illumination at 48 h resulted in rapid regrowth of most tumors and only 10% cure. This protocol did not affect a significant decrease in vascular perfusion or increase in tumor hypoxia. These data show that optimal responses to mTHPC-mediated PDT were primarily dependent on the early vascular response, and that plasma drug levels at the time of illumination could predict this relationship.  相似文献   

8.
In photodynamic therapy, the threshold for light induced toxicity depends on the drug concentration and the light dose. This study was aimed to show for vascular photosensitizers that the toxicity threshold on normal tissue may be predictably modified by modulation of the cutaneous vasculature. Albino rabbits were injected with 1.0 mg/kg of a vascular photosensitizer, benzoporphyrin derivative monoacid ring-A. The threshold light dose for toxicity to normal skin was determined at an absorption maximum of the drug (694 nm), 1 h after drug injection. The cutaneous vasculature was dilated by prior skin exposure to ultraviolet radiation or was constricted by iontophoretic application of epinephrine. Threshold toxicity was determined clinically and by assessing the effective concentration of hemoglobin in the skin by diffuse reflectance spectroscopy (DRS). Tissue samples that received threshold doses were investigated with light and electron microscopy. The toxicity threshold increased by 3.2+/-0.9 (mean+/-S.D.) following vasoconstriction and decreased by 3.6+/-0.8 following vasodilation, compared to control sites. Light and electron microscopy showed similar findings at threshold for both vasodilated and vasoconstricted sites. Therefore vascular modulation may be used to predictably enhance or suppress the level of phototoxicity of normal skin.  相似文献   

9.
Bacteriochlorophyll-a (bChla), which absorbs light of 780 nm wavelength, was tested for in vivo photodynamic activity in the SMT-F and RIF transplantable mouse tumor systems. High performance liquid chromatography (HPLC) analysis of tissue extracts showed that bChla was rapidly degraded in vivo to bacteriopheophytin-a (bPheoa) and other breakdown products. These were also photodynamically active, and tumor response could be achieved over a wavelength range of 660 to 780 nm, while tumor cure was restricted to wavelengths of 755 (bPheoa) to 780 nm. A photosensitizing product absorbing at 660 nm was also present in isolated tumor cells. Photodynamic cell kill of tumor cells isolated from tumors after bChla accumulation in vivo, using 755 or 780 nm light vitro, was exponential up to 20–40 J cm−2. Above this light dose little or no further damage could be achieved, which is an indication of the rapid photobleaching of these sensitizers. In vivo, vascular occlusion occurred readily if light treatment was delivered shortly after sensitizer administration, but was delayed if light treatment was carried out 24 h after injection. Although up to 70% of tumor cells were lethally damaged after completion of in vivo light treatment, concurrent severe vascular destruction seemed necessary for tumor cure. Normal tissue photosensitivity totally subsided within 5 days after sensitizer administration.  相似文献   

10.
SITES OF PHOTODAMAGE in vivo and in vitro BY A CATIONIC PORPHYRIN   总被引:2,自引:1,他引:2  
Abstract— Localization and photodynamic efficacy of a monocationic porphyrin (MCP) were assessed using murine leukemia cells in culture. This sensitizer localized at surface membrane loci and catalyzed selective photodamage to membrane structures. Although both cationic and hydrophobic, this porphyrin was not recognized by the multidrug transporter, which excludes many cationic agents from cells that express multidrug resistance. Photodynamic studies with the murine radiation-induced fibrosarcoma tumor model indicated moderate photosensitization of neoplastic lesions in vivo at 3 h, but not at 24 h after sensitizer administration. Pharmacokinetic studies indicate that plasma levels, not tissue levels were the major determinant of photodynamic therapy (PDT) response. Consistent with this observation, vascular damage and disturbances of tissue perfusion followed PDT. These effects were more pronounced in tumor-bearing skin than in normal skin. The therapeutic response to MCP appeared to be related mainly to secondary, probably vascular, effects.  相似文献   

11.
Abstract Benzoporphyrin derivative monoacid ring A (BPD-MA) is a chlorin-like photosensitizer currently in clinical trials for cancer and psoriasis. It has maximal absorption peaks at both 630 and 690 nm and can be activated at both these wavelengths. In vitro phototoxicity tests using the P8 15 murine mastocytoma cell lines conducted over wavelengths of light between 678 and 700 nm emitted by an argon-ion pumped dye laser showed that equivalent cell kill could be achieved between 682 and 690 nm. Tests on in vivo phototoxicity of normal skin of DBN2 mice injected with 2 mg/kg of BPD-MA and exposed to light at 125 J/cm2, between 620 and 700 nm, demonstrated peaks of normal skin damage occurring at 630–640 nm and 680–690 nm. In tests carried out with light between 620 and 700 nm, at 10 nm increments, it was seen that light delivered at 680–690 nm caused slightly more damage to normal skin than light delivered at 630–640 nm. When lower doses of light between 675 and 705 nm were tested using smaller increments, it was determined that equivalent skin damage occurred over a range of 68–95 nm. Antitumor efficacy in tumor-bearing DBN2 mice was tested between 683 and 695 nm. It was found that equivalent antitumor efficacy, determined by assessing tumor-free status at 20 days posttreatment, occurred at wavelengths between 685 and 693 nm. When tumor-bearing animals injected with BPD-MA at 2 mdkg and exposed to light 3 h later were treated with either 630 or 690 nm light at various doses, it was observed that 690 nm light was more effective at tumor ablation than was 630 nm light, demonstrating that while similar damage to normal skin may be effected by equivalent doses of light at either wavelength, tumor ablation was greater at 690 nm. Further, our data suggest that alternative light sources with bandwidths greater than those of the argon-ion pumped dye laser (±0.3 nm) may have equivalent efficacy with this photosensitizer.  相似文献   

12.
The effects of systemic administration of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine (L-NNA) in combination with photodynamic therapy (PDT) on tumor response, tumor oxygenation and tumor and normal skin perfusion were studied in C3H mice bearing subcutaneous radiation-induced fibrosarcoma tumors. Photodynamic therapy was carried out using the photosensitizer Photofrin (5 mg/kg) in conjunction with a low fluence rate (30 mW/cm2) and a high fluence rate (150 mW/cm2) protocol at a total fluence of 100 J/cm2. Low fluence rate PDT produced approximately 15% tumor cures, a response not significantly altered by administration of 20 mg/kg L-NNA either 5 min before or after PDT. In contrast, high fluence rate PDT produced no tumor cures by itself, but addition of L-NNA either pre- or post-PDT resulted in approximately 30% and approximately 10% tumor cures, respectively. The L-NNA by itself tended to decrease tumor pO2 levels and perfusion, but statistically significant differences were reached only at one time point (1 h) with one of the oxygenation parameters measured (% values < 2 mm Hg). Photodynamic therapy by itself decreased tumor oxygenation and perfusion more significantly. Addition of L-NNA before PDT further potentiated this effect. The L-NNA exerted its most striking effects on the PDT response of the normal skin microvasculature. Low fluence rate PDT caused severe and lasting shut-down of skin microvascular perfusion. With high fluence rate PDT, skin perfusion was initially decreased but recovered to persistent normal levels within 1 h of treatment. Administration of L-NNA reversed this response, converting it to complete and lasting vascular shut-down identical to that achieved with low fluence rate PDT. This effect was somewhat L-NNA dose dependent but was still marked at a dose of 1 mg/kg. It occurred whether L-NNA was given before or after PDT. The L-NNA did not alter the long-term vascular response of skin to low fluence rate PDT. The ability of L-NNA to correspondingly improve tumor response and severely limit skin vascular perfusion following high fluence rate PDT, while providing no benefit for the low fluence rate protocol, suggests that vascular changes in the tumor surrounding normal tissue contribute to the enhanced tumor curability with adjuvant L-NNA treatment.  相似文献   

13.
In the present study, photodynamic activity of a novel photosensitizer (PS), Chlorin e(6)-2.5 N-methyl-d-glucamine (BLC 1010), was evaluated using the chorioallantoic membrane (CAM) as an in vivo model. After intravenous (i.v.) injection of BLC 1010 into the CAM vasculature, the applicability of this drug for photodynamic therapy (PDT) was assessed in terms of fluorescence pharmacokinetics, i.e. leakage from the CAM vessels, and photothrombic activity. The influence of different PDT parameters including drug and light doses on the photodynamic activity of BLC 1010 has been investigated. It was found that, irrespective of drug dose, an identical continuous decrease in fluorescence contrast between the drug inside and outside the blood vessels was observed. The optimal treatment conditions leading to desired vascular damage were obtained by varying drug and light doses. Indeed, observable damage was achieved when irradiation was performed at light doses up to 5 J/cm(2) 1 min after i.v. injection of drug doses up to 0.5 mg/kg body weight(b.w.). However, when irradiation with light doses of more than 10 J/cm(2) was performed 1 min after injection of drug doses up to 2 mg/kg body weight, this led to occlusion of large blood vessels. It has been demonstrated that it is possible to obtain the desired vascular occlusion and stasis with BLC 1010 for different combinations of drug and/or light doses.  相似文献   

14.
Abstract— The tumoricidal effects of photochemotherapy with two photosensitizers, 5-ethylamino-9-diethylaminobenzo[ a ] phenothiazinium chloride (EtNBS) and benzoporphyrin derivative monoacid ring A (BPD-MA), were evaluated separately and in combination against the EMT-6 fibrosarcoma implanted subcutaneously in BALB/c mice. Animals carrying tumors 8-10 mm in diameter were divided into eight different groups (∼20/group) and subjected to various photoirradiation and drug conditions. The tumor response to photodynamic therapy (PDT) was measured as the mean tumor wet weight 2 weeks post-PDT. The combination treatment with 5.25 mg/kg EtNBS and 2.5 mg/kg BPD-MA followed by photoirradiation with 100 J/cm2 at 652 nm and then by 100 J/cm2 at 690 nm resulted in a 95% reduction in the average tumor weights compared to controls (no light, no drugs) with 76% of the mice being tumor free 2 weeks post-PDT. Because treatment with EtNBS or BPD-MA at twice the light dose and drug concentration resulted in either no significant reduction in tumor weights or increased the lethality of treatment, respectively, the data suggest that the enhanced PDT effect observed with the combination of drugs is synergistic rather than additive. Histology of tumors 24 h post-PDT with the combination of drugs showed nearly complete destruction of the tumor mass with little or no damage to the vasculature and no extravasation of red blood cells. There was no damage to the normal skin adjacent to the tumor. Fluorescence microscopy of EMT-6 cells incubated in vitro with the two photosensitizers revealed that they were localized to different intracellular compartments. The fluorescence pattern from frozen tumor tissue slices following the in vivo administration of the photosensitizers indicated a greater intracellular localization for EtNBS vs BPD-MA.  相似文献   

15.
Abstract— Photodynamic therapy disrupts blood flow to tumors and produces tumor necrosis. These effects may be due to a localized generation of singlet oxygen. The current studies used direct observations of the rat cremaster microvasculature to examine the vascular effects of PDT. The objective of the morphological examination was to delineate the structural basis for the altered blood flow in photodynamic therapy. Dihematoporphyrin ether given 30 min or 48 h prior to the experiment was activated with green light (wavelength530–560 nm, 120 J/cm2). After the in vivo activation the tissues were prepared for electron microscopy. Light alone induced little or no change in the luminal content or vessel wall. On exposure to activating light both acute (30 min) and long term (48 h) dihematoporphyrin ether pretreated samples displayed formation of luminal aggregates, granulocyte margination and migration, and endothelial cell and smooth muscle cell damage. The latter was more pronounced in the arterioles than the venules. Perivascular changes included interstitial edema and damage to striated myocytes. Some of the alterations such as interstitial edema may be transient; however, smooth and skeletal muscle cell injury are important in normal and tumor tissue necrosis after photodynamic therapy.  相似文献   

16.
We describe here a strategy for photodynamic eradication of solid melanoma tumors that is based on photo-induced vascular destruction. The suggested protocol relies on synchronizing illumination with maximal circulating drug concentration in the tumor vasculature attained within the first minute after administrating the sensitizer. This differs from conventional photodynamic therapy (PDT) of tumors where illumination coincides with a maximal concentration differential of sensitizer in favor of the tumor, relative to the normal surrounding tissue. This time window is often achieved after a delay (3-48 h) following sensitizer administration. We used a novel photosensitizer, bacteriochlorophyll-serine (Bchl-Ser), which is water soluble, highly toxic upon illumination in the near-infrared (lambda max 765-780 nm) and clears from the circulation in less than 24 h. Nude CD1 mice bearing malignant M2R melanotic melanoma xenografts (76-212 mm3) received a single complete treatment session. Massive vascular damage was already apparent 1 h after treatment. Changes in vascular permeability were observed in vivo using contrast-enhanced magnetic resonance imaging (MRI), with the contrast reagent Gd-DTPA, by shortening spin-spin relaxation time because of hemorrhage formation and by determination of vascular macromolecular leakage. Twenty-four hours after treatment a complete arrest of vascular perfusion was observed by Gd-DTPA-enhanced MRI. Histopathology performed at the same time confirmed primary vascular damage with occlusive thrombi, hemorrhage and tumor necrosis. The success rate of cure of over 80% with Bchl-Ser indicates the benefits of the short and effective treatment protocol. Combining the sensitizer administration and illumination steps into one treatment session (30 min) suggests a clear advantage for future PDT of solid tumors.  相似文献   

17.
Fluorescence photobleaching of protoporphyrin IX (PpIX) during superficial photodynamic therapy (PDT), using 514 nm excitation, was studied in UVB-induced tumor tissue in the SKH-HR1 hairless mouse. The effects of different irradiance and light fractionation regimes upon the kinetics of photobleaching and the PDT-induced damage were examined. Results show that the rate of PpIX photobleaching (i.e., fluorescence intensity vs fluence) and the PDT damage both increase with decreasing irradiance. We have also detected the formation of fluorescent PpIX photoproducts in the tumor during PDT, although the quantity recorded is not significantly greater than generated in normal mouse skin, using the same light regime. The subsequent photobleaching of the photoproducts also occurs at a rate (vs fluence) that increases with decreasing irradiance. In the case of light fractionation, the rate of photobleaching increases upon renewed exposure after the dark period, and there is a corresponding increase in PDT damage although this increase is smaller than that observed with decreasing irradiance. The effect of fractionation is greater in UVB-induced tumor tissue than in normal tissue and the damage is enhanced when fractionation occurs at earlier time points. We observed a variation in the distribution of PDT damage over the irradiated area of the tumor: at high irradiance a ring of damage was observed around the periphery. The distribution of PDT damage became more homogeneous with both lower irradiance and the use of light fractionation. The therapeutic dose delivered during PDT, calculated from an analysis of the fluorescence photobleaching rate, shows a strong correlation with the damage induced in normal skin, with and without fractionation. The same correlation could be made with the data obtained from UVB-induced tumor tissue using a single light exposure. However, there was no such correlation when fractionation schemes were employed upon the tumor tissue.  相似文献   

18.
Antivascular tumor eradication by hypericin-mediated photodynamic therapy   总被引:4,自引:0,他引:4  
Photodynamic therapy (PDT) with hypericin has been shown to inhibit tumor growth in different tumor models, and tumor vascular damage was suggested to be mainly responsible for the antitumoral effect. Here, we demonstrate tumor vascular damage and its consequence on local tumor control after hypericin-mediated PDT by using both short and long drug-light intervals. Radiation-induced fibrosarcoma-1 tumors were exposed to laser light at either 0.5 or 6 h after a 5 mg/kg dose of hypericin. Tumor perfusion was monitored by fluorescein dye-exclusion assay and by Hoechst 33342 staining of functional blood vessels. Significant reduction in tumor perfusion was found immediately after both PDT treatments. A complete arrest of vascular perfusion was detected by 15 h after the 0.5 h-interval PDT, whereas well-perfused areas could still be found at this time in tumors after the 6 h-interval PDT. A histological study confirmed that primary vascular damage was involved in both PDT treatments. Tumor cells appeared intact shortly after light treatment, degenerated at later hours and became extensively pycnotic at 24 h after the 0.5 h-interval PDT. PDT under this condition led to complete tumor cure. In contrast, significant numbers of viable tumor cells, especially at the tumor periphery, were found histologically at 24 h after the 6 h-interval PDT. No tumor cure was obtained when PDT was performed at this time. Our results strongly suggest that targeting the tumor vasculature by applying short drug-light interval PDT with hypericin might be a promising way to eradicate solid tumors.  相似文献   

19.
Six sulfonated metallophthalocyanines, chelated with either aluminum or zinc and sulfonated to different degrees, were studied in vivo for their photodynamic activity in a rat skin-fold chamber model. The chamber, located on the back of female WAG/Rij rats, contained a syngeneic mammary carcinoma implanted into a layer of subcutaneous tissue. Twenty-four hours after intravenous administration of 2.5 μmol/kg of one of the dyes, the chambers received a treatment light dose of 600 J/cm2 with monochromatic light of 675 nm at a power density of 100 mW/ cm2. During light delivery and up to a period of 7 days after treatment, vascular effects of tumor and normal tissue were scored. Tumor cell viability was determined by histology and by reimplantation of the chamber contents into the skin of the same animal, either 2 h after treatment or after the 7 day observation period. Vascular effects of both tumor and subcutaneous tissue were strongest with dyes with the lowest degree of sulfonation and decreased with increasing degree of sulfonation. Tumor regrowth did not occur with aluminum phthalocyanine mono- and disulfonate and with zinc phthalocyanine monosulfonate. With the protocol that was used, complete necrosis without recovery was only observed when reimplantation took place at the end of the 7 day follow-up period. Reimplantation 2 h after treatment always resulted in tumor regrowth. At this interval, the presence of viable tumor cells was confirmed histologically. In general tumor tissue vasculature was more susceptible to photodynamic damage than vasculature of the normal tissue. The effect on the circulation of both tumor and normal tissue increased with decreasing degree of sulfonation. Based on this study, the photodynamic effects using the six sulfonated metallophthalocyanines on the vasculature can be ranked from high to low as: AlPcS2= ZnPcS1 > AIPcS1 > AIPcS4 > ZnPcS2 > ZnPcS4.  相似文献   

20.
Abstract— The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (<1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号