首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A statistical model has been employed to determine the unidirectional site epimerization probability, ε, during propylene polymerization with the following C1-symmetric metallocene precatalysts activated with MAO (MAO = methylaluminoxane): doubly-bridged rac-(1,2-SiMe2)25-C5H2-4-(CHMe(CMe3))}{η5-C5H-3,5-(CHMe2)2}ZrCl2 (1) and (1,2-SiMe2)25-C5H2-4-(1R,2S,5R-menthyl)}{η5-C5H-3,5-(CHMe2)2}ZrCl2 (2); and singly-bridged Me2C(3-(2-adamantyl)-C5H3)(C13H8)ZrCl2 (3) and Me2Si(3-(2-adamantyl)-C5H3)(C13H8)ZrCl2 (4). For 1/MAO a steep tacticity dependence on monomer concentration was found, as ε increased from 0.114 to 0.909 as [C3H6] decreased from 12.5 M to 0.5 M; similarly, ε increased for 2/MAO from 0.177 to 0.709. For 3/MAO, ε was moderately responsive to an increase in polymerization temperature, as ε increased from 0.000 to 0.485 from Tp = 0-90 °C ([C3H6] = 1.1 M). Similarly, ε increased for 4/MAO from 0.709 to 0.913 from Tp = 0-40 °C; at higher temperatures, bidirectional site epimerization was implicated.  相似文献   

2.
Alkyl and dialkylammonium tetrafluoroborate promoted cis-trans isomerization of 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane (1) in DMSO-d6 were studied. The isomerization equilibrium constant K are within the range of 3.74-3.30 from 22 to 47 °C. Thermodynamic parameters of ΔH° and ΔS° for the isomerization were −0.95 kcal/mol and −0.59 cal/mol-K respectively. The isomerization rate is first order in [cis-1] and second order in [RnNH4−nBF4]. Both components of RnNH4−n+ and BF4 are essential for the catalytic cis-trans isomerization. The catalytic strength follows the decreasing order of +H3N(CH2)6NH3+>n-C8H17NH3+>n-C16H33NH3+>Me3CNH3+>PhCH2NH3+>Et2NH2+?Ph2CHNH3+, Et3NH+. Inversion region was observed in the plot of ln(kf/T) versus (1/T) with the ceiling located at around 38 °C. The positive activation enthalpy of 9 kcal/mol was estimated at 22-32 °C. The activation enthalpy turns to be slightly negative at T>38 °C.  相似文献   

3.
The two cyclooctatetraene metal carbonyls that have been synthesized are the tetrahapto derivative (η4-C8H8)Fe(CO)3 and the hexahapto derivative (η6-C8H8)Cr(CO)3 using the reactions of cyclooctatetraene with Fe(CO)5 and with fac-(CH3CN)3Cr(CO)3, respectively. Related C8H8M(CO)n (M = Ti, V, Cr, Mn, Fe, Co, Ni; n = 4, 3, 2, 1) species have now been investigated by density functional theory in order to explore the scope of cyclooctatetraene metal carbonyl chemistry. In this connection, the existence of octahapto (η8-C8H8)M(CO)n species is predicted as long as the central metal M does not exceed the 18-electron configuration by receiving eight electrons from the η8-C8H8 ring. Thus the lowest energy structures (η8-C8H8)Ti(CO)n (n = 3, 2, 1), (η8-C8H8)M(CO)n (M = V, Cr; n = 2, 1), and (η8-C8H8)Mn(CO) all have octahapto η8-C8H8 rings. An exception is (η6-C8H8)Fe(CO), with a hexahapto η6-C8H8 ring and thus only a 16-electron configuration for the iron atom. Hexahapto (η6-C8H8)M(CO)n structures are predicted for the known (η6-C8H8)Cr(CO)3 as well as the unknown (η6-C8H8)Ti(CO)4, (η6-C8H8)V(CO)3, (η6-C8H8)Mn(CO)2, and (η6-C8H8)Fe(CO)2 with 18, 18, 17, 17, and 18 electron configurations, respectively, for the central metal atoms. There are two types of tetrahapto C8H8M(CO)n complexes. In the 1,2,3,4-tetrahapto (η4-C8H8)M(CO)n complexes two adjacent CC double bonds, forming a 1,3-diene unit similar to butadiene, are bonded to the metal atom. In the 1,2,5,6-tetrahapto (η2,2-C8H8)M(CO)3 derivatives two non-adjacent CC double bonds of the C8H8 ring are bonded to the metal atom. The known (η4-C8H8)Fe(CO)3 is a 1,2,3,4-tetrahapto complex. The unknown isomeric 1,2,5,6-tetrahapto complex (η2,2-C8H8)Fe(CO)3 is predicted to lie ∼15 kcal/mol above (η4-C8H8)Fe(CO)3. The related 1,2,5,6-tetrahapto complexes (η2,2-C8H8)Cr(CO)4, (η2,2-C8H8)Mn(CO)4, [(η2,2-C8H8)Mn(CO)3], (η2,2-C8H8)Co(CO)2, and (η2,2-C8H8)Ni(CO)2 are all predicted to be low-energy structures.  相似文献   

4.
Isochoric heat capacities (CV, V, T), phase boundary properties (TS, ρS) and the critical (TC, ρC) parameters for high-purity (0.9999+ mole fraction) toluene have been measured with a high temperature, high pressure, nearly constant volume adiabatic calorimeter and quasi-static thermogram technique. Measurements were made at three selected liquid and vapor isochores 777.8, 555.25, and 214.64 kg m−3 in the temperature range from 379 to 591 K. For five near-critical isochores 268.68, 281.68, 296.62, 301.52, and 318.28 kg m−3, the measurements were made in the immediate vicinity of the coexistence curve in order to accurately determine the phase transition temperatures (TS, ρS) (shape of the coexistence curve near the critical point) and the critical parameters (TC, ρC). The total combined uncertainty of heat capacity, density, and temperature measurements were estimated to be less than 2%, 0.06%, and 15 mK, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k = 2. The uncertainty of the phase transition and the critical temperature value was 0.02 K. The Krichevskii parameter for some toluene-containing binary mixtures was calculated. The derived values of the Krichevskii parameter were used to estimate the effect of dilute impurities on the critical parameters of toluene. The measured values of saturated density near the critical point were interpreted in terms of the “complete scaling” theory in order to study singularity behavior of the coexistence curve diameter. The measured isochoric heat capacities and saturated densities were compared with the data reported by other authors and values calculated from an equation of state and other correlations.  相似文献   

5.
Calorimetric titration and NMR experiments in aqueous phosphate buffer (pH 7.2) at 298.15 K have been done to determine the binding mode, complex stability constants and thermodynamics (ΔG°, ΔH°, and TΔS°) for 1:1 inclusion complexation of water-soluble calix[n]arenesulfonates (CnAS, n = 4 and 6) and thiacalix[4]arene tetrasulfonate (TCAS) with acethylcholine, carnitine, betaine and benzyltrimethylammonium ion. The results show the inclusion complexations are driven by enthalpy (ΔH° < 0), accompanied by negative entropic changes (ΔS° < 0). The binding affinities (C4AS > C6AS > TCAS) are discussed from the viewpoint of CH-π/π-π interactions, electrostatic interactions and size/shape-fit relationship between host and guest.  相似文献   

6.
The vapour pressure of binary mixtures of hydrogen sulphide with ethane, propane, and n-butane was measured at T = 182.33 K covering most of the composition range. The excess Gibbs free energy of these mixtures has been derived from the measurements made. For the equimolar mixtures for (H2S + C2H6), (820.1 ± 2.4) J · mol−1 for (H2S + C3H8), and (818.6 ± 0.9) J · mol−1 for (H2S + n-C4H10). The binary mixtures of H2S with ethane and with propane exhibit azeotropes, but that with n-butane does not.  相似文献   

7.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   

8.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

9.
Homopolymerization of α-olefins (1-CnH2n, n = 6, 8, 10, 12, 16 and 18) and their copolymerization with styrene were carried out in toluene at 60 °C using diphenylzinc-ethenylbisindenylzirconium dichloride-methylaluminoxane as initiator system. Atactic polystyrene and almost isotactic poly(α-olefin)s were obtained. Copolymerization of S/α-olefin with this initiator system gave isotactic olefin-enriched copolymers. According to DSC analysis, the homopolymers P(1-C12H24), P(1-C16H32), and P(1-C18H36) as well their styrene copolymers are crystalline.  相似文献   

10.
Planar chiral alkenylferrocene phosphanes, viz. (Sp)-[Fe(η5-C5H3-1-PPh2-2-CHCR2)(η5-C5H5)] (R = H, (Sp)-2; Ph, (Sp)-5) and (Sp)-[Fe(η5-C5H3-1-PPh2-2-(E)-CHCHR)(η5-C5H5)] (R = Ph, (Sp)-3; C(O)CH3, (Sp)-6; and CO2CH2CH3, (Sp)-7) have been prepared by alkenylation of (Sp)-2-(diphenylphosphanyl)ferrocenecarboxaldehyde and tested as ligands for enantioselective palladium-catalysed allylic alkylation of 1,3-diphenyprop-2-en-1-yl acetate with dimethyl malonate. All phosphanylalkenes formed active catalysts. However, the induced enantioselectivity was only poor to moderate [12-43% ee after 20 h at room temperature], with the ee’s and configuration of the preferred product strongly depending on the ligand structure. The catalytic results have been related to solution properties (NMR, ESI MS) and the solid-state structural data (X-ray diffraction) of [Pd(η3-1,3-Ph2C3H3){(Sp)-22P}]ClO4 ((Sp)-12), which represent a model of the plausible reaction intermediate.  相似文献   

11.
The highly electrophilic borane B(C6F5)3 reacts with e.g., n-octadecanol (n-C18H37OH) and n-octadecanethiol (n-C18H37SH) to form equilibrium mixtures of the reactants and their 1:1 adducts (n-C18H37EH)B(C6F5)3 (E = O, S). The latter are acidic, and react with Cp∗MMe3 (M = Ti, Hf) in polar and non-polar solvents to give methane and the unstable complexes [Cp∗MMe2][(n-C18H37E)B(C6F5)3]. The latter are very good initiators for the copolymerization of isobutene with isoprene at relatively high temperatures, giving high conversions to high molecular weight isobutene-isoprene copolymers. The weight average molecular weights are unusually high for the temperatures used, consistent with current theories of the role of weakly coordinating anions. The effects of changing the substituents on the alcohols are also investigated.  相似文献   

12.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

13.
The heat capacity investigation of crystalline pentasodium zirconium tris(phosphate) was carried out in a vacuum adiabatic calorimeter between 7 and 340 K and in a differential scanning calorimeter of the heat bridge type between 330 and 620 K. Between 389 and 424 K, an isostructural solid-to-solid phase transition of Na5Zr(PO4)3, has been found, the nature of which is connected with a centering of off-centered zirconium atoms in octahedral sites and an occupation transfer between sodium sites in the structure. The results were used to calculate the characteristics of the phase transition and the thermodynamic functions of Na5Zr(PO4)3: the transition temperature T°trs, enthalpy of transition ΔtrsH°, entropy of transition ΔtrsS°; enthalpy H°(T)−H°(0), entropy S°(T) and Gibbs function G°(T)−H°(0) over the range from 0 to 620 K. From hydrofluoric acid solution microcalorimetry, the enthalpy of solution of Na5Zr(PO4)3 at 298.15 K has been determined and the standard enthalpy of formation has been derived. By combining the data obtained by the two techniques, the Gibbs function of formation of Na5Zr(PO4)3 at 298.15 K has been calculated.  相似文献   

14.
The room-temperature metallation reactions of the K+ salt of the [7,8-(PhCH2)2-7,8-nido-C2B9H10] anion (1) with the COD-metal μ-chloride dimers [(η4-C8H12)2Rh2(μ-Cl)2] (2) and [(η4-C8H12)2Ir2(μ-Cl)2] (3) in benzene/ethanol solution gave formally 16-electron pseudocloso-type complexes with the η3-cyclooctenyl ligand at the metal vertices, [3-{(1-3-η3)-C8H13}-1,2-(PhCH2)2-pseudocloso-3,1,2-MC2B9H9] [4, M = Rh(III); 5, M = Ir(III)]. No evidence supporting the existence of an agostic C-H?M bonding interaction in these compounds was obtained either from the crystallographic or the phase-sensitive 2-D [1H-1H] NOESY/EXSY studies of 4. The extraordinary stability of complexes 4 and 5 can therefore be associated with their cage-deformed cluster structures, where electronically-deficient (16-electron) metal centers are believed to be stabilized by additional electron density released from the polyhedral C-C bond cleavage. DFT solid-state calculations performed for closo (18-electron) and pseudocloso (16-electron) Rh(III) complexes, [3-(η5-C5Me5)-1,2-(PhCH2)2-closo-3,1,2-RhC2B9H9] (6, C-C, 1.7397 Å) and [3-{(1-3-η3)-C8H13}-1,2-(4′-MeC6H4)2-pseudocloso-3,1,2-RhC2B9H9] (9, C?C, 2.420(2) Å), showed that the electron density transfer from the carborane moiety to the rhodium center is marginally greater for complex 9, in accordance with the idea that electronics rather than sterics play a crucial role in the stabilization of 16-electron pseudocloso-metallacarborane species.  相似文献   

15.
Treatment of [RuCl26-C6H6)]x with bidentate phosphine ligand BDNA [1,8-bis(diphenylphosphinomethyl)naphthalene] in methanol at room temperature gave η6-benzene-ruthenium complexes Ru2Cl46-C6H6)2(μ-BDNA) (1). Complex 1 further reacted with AgBF4 to form complex [Ru2Cl2(μ-Cl)(η6-C6H6)2(μ-BDNA)](BF4) (2). [RuCl26-C6H6)]x reacted with BDNA in refluxing methanol and then the reaction solution was treated with AgBF4 to generate complex [Ru2Cl26-C6H6)2(μ-BDNA)2](BF4)2 (3). Their compositions and structures had been determined by elemental analyses, NMR spectra and single crystal X-ray diffractions. X-ray diffraction showed that complex 1 belonged to monoclinic crystal system, P21/c space group with Z = 4, a = 12.810 Å, b = 21.507 Å, c = 18.471 Å, β = 107.95°; complex 2 belonged monoclinic crystal system, P21/n space group with Z = 4, a = 14.498 Å, b = 15.644 Å, c = 20.788 Å, β = 103.404°, and complex 3 belonged to monoclinic crystal system, P21/n space group with Z = 2, a = 13.732 Å, b = 14.351 Å, c = 19.733 Å, β = 94.82°.  相似文献   

16.
The reaction of biphenyl (1) with an excess of lithium in THF at room temperature leads to a solution of the corresponding dianion (I), which by successive reactions with an alkyl fluoride [E1 = n-C8H17F, c-C5H9CH2F, CH2CH(CH2)4F] at 0 °C and another electrophile [E2 = n-C4H9Br, Et2CO, Me2C(O)CH2, i-Pr3SiCl] at −78 °C yields the corresponding 1,4-disubstituted 1,4-dihydrobiphenyls 3 in a regioselective manner, as mixtures of cis- and trans-isomers. The diastereomers of 3 are separated by column chromatography.  相似文献   

17.
The comprehensive study of conductivity σ, Hall coefficient RH and Seebeck coefficient S has been carried out on high-quality single crystals of CeB6 in a wide range of temperatures 1.8-300 K. An anomalous behavior of all transport characteristics (σ, RH, S) was found for the first time in the vicinity of T*≈80 K. The strong decrease of conductivity σ as well as the unusual asymptotic behavior of Seebeck coefficient S(T)∼−ln T observed below T* allowed us to conclude in favor of crossover between different regimes of charge transport in CeB6. The pronounced change of Hall mobility μH, which diminishes from the maximum value of 20 cm2/(V s) at T* to the values of ∼6 cm2/(V s) at T∼10 K, seems to be attributed to the strong enhancement of charge carriers scattering due to fast spin fluctuations on Ce-sites. The low-temperature anomalies of the charge transport characteristics are compared with the predictions of the Kondo-lattice model.  相似文献   

18.
A variety of monocyclopentadienyl alkoxo titanium dichloride and bisalkoxo titanium dichloride complexes have been prepared and characterized by spectroscopic techniques. The titanium derivatives containing both cyclopentadienyl and various alkoxo ligands [Ti(η5-C5H5)(OR)Cl2] (1-5) have been synthesized from the reaction of [Ti(η5-C5H5)Cl3] with 1 equivalent of the corresponding alcohol in THF in the presence of triethylamine (ROH = Adamantanol, 1R,2S,5R-(−)-menthol, 1S-endo-(−)-borneol, cis-1,3-(−)-benzylideneglycerol, 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose). The bisalkoxo titanium dichloride derivatives [TiCl2(OR)2] (6-10) have been prepared by a redistribution reaction between Ti(OR)4 and TiCl4 compounds 6-8 (OR = Adamantanoxy, (1R,2S,5R)-(−)menthoxy, (1S-endo)-(−)-borneoxy) and by reaction of [Ti(OR)2(OPri)2]2 with CH3COCl compounds 9 and 10 (OR = 1,2:3,4-di-O-isopropylidene-α-d-galactopyranoxy, and 1,2:5,6-di-O-isopropylidene-α-d-glucofuranoxy). The molecular structures of 2 and 3 have been determined by single crystal X-ray diffraction studies.  相似文献   

19.
Ferrocene-bridged NCN pincer complexes of structural type Fe(η5-C5H4-4-NCN-1-MX)2 (X = I: 6, M = Pd; 7, M = Pt; X = Cl: 8, M = Pt; NCN = [4-C6H2(CH2NMe2)2-2,6]) are accessible by the subsequent reaction of Fe(η5-C5H4-4-NCNH)2 (4) with nBuLi and [PtCl2(SEt2)2] (synthesis of 8) or treatment of Fe(η5-C5H4-4-NCN-1-I)2 (5) with [Pd2(dba)3] (synthesis of 6) or [Pt(tol)2(SEt2)]2 (synthesis of 7) (dba = dibenzylidene acetone, tol = 4-tolyl). In addition, the Sonogashira cross-coupling of Fe(η5-C5H4I)2 (1) with HCC-4-NCNH (2) gives Fe(η5-C5H4-CC-4-NCNH)2 (3). The reaction behavior of 3 towards tBuLi is reported as well.Cyclovoltammetric studies show that the ferrocene entity can be oxidized reversibly. The Fe(II)/Fe(III) potential decreases with increasing electron density at the NCN pincer units due to the presence of the M-halide moiety (M = Pd, Pt).The solid state structure of Fe(η5-C5H4-4-NCN-1-PdI)2 (6) is presented. In 6 the Fe(η5-C5H4)2 unit connects two NCN-PdI pincer entities with palladium in a square-planar environment. The cyclopentadienyl ligands show a staggered conformation. The C6H2 rings are tilted by 23.5(3)° towards the C5H4 entities and the C6H2 plane is almost coplanar with the coordination plane (10.3(3)°).  相似文献   

20.
The synthesis of the biphenyl alkynyl thiols and thioesters R′-CC-C6H4-C6H4-SR (3: R′ = SiMe3, R = C(O)Me; 4: R′ = SiMe3, R = H; 5: R′ = H, R = C(O)Me) from I-C6H4-C6H4-SC(O)Me (1) is described. Molecules 1 and 5 have been used as starting materials in the synthesis of mono- and heterobimetallic transition metal complexes of type LnM′-CC-C6H4-C6H4-SR (7: LnM′ = Fc, R = C(O)Me; 8: LnM′ = Fc, R = H; 10: LnM′ = (Ph3P)Au, R = C(O)Me; 14: LnM′ = FcPPh2-Au, R = C(O)Me; Fc = (η5-C5H5)(η5-C5H4)Fe; FcPPh2 = (η5-C5H5)(η5-C5H4PPh2)Fe). While complex 7is accessible by the Sonogashira cross-coupling of Fc-CCH (6) with 1, molecules 10 and 14 can be prepared by treatment of the thioester 5 with (Ph3P)AuCl (9) and FcPPh2-AuCl (13), respectively.The molecular solid state structures of 3, 7, 10 and 13-15 have been determined by single crystal X-ray crystallographic analysis. Typical features of these species are their linear M-CC-C6H4-C6H4-SR structure and the lack of coplanarity of the biphenyl arene rings. The overall length of these complexes are 13.345(2) Å for 3 (molecule A), 15.146(3) Å for 7, 15.705(2) Å for 10 (molecule A) and 15.649(4) Å for 14. The thioester groups are pointing away from the ferrocene building block. In 7 a linear 1D chain is set-up by π-interactions between two independent molecules of 7. Characteristic for 15 is the formation of a Au2I2 ring, while 13 is monomeric.All compounds were studied with cyclic voltammetry. Characteristic are the reversible ferrocene Fe(II)/Fe(III) redox wave, the irreversible reduction of Au(I) to Au(0), the oxidative cleavage of the S-C(O)Me sulfur-carbon (3, 5, 7, 10 and 14) and of the sulfur-hydrogen bond (4 and 8), respectively. Electronic effects extending from the -SH-end group to the ferrocene unit resulting in considerable shifts of the redox potential of the latter entity are found. Coordination of Au(I) at the FcPPh2 moiety also results in a shift of the redox potential of the ferrocene group indicative of an electron withdrawing effect of the Au(I) species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号