首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 921 毫秒
1.
焙烧温度对Li[Mn1/3Ni1/3CO1/3]O2结构及电化学性能影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用碳酸盐共沉淀法制备了Li[Mn1/3Ni1/3Co1/3]O2,研究了前驱体的焙烧温度对材料结构和电化学性能的影响.XRD测试结果表明,800℃下焙烧得到的样品具有较好的层状结构和较低的阳离子混排程度.SEM测试表明合成材料具有球状形貌,平均粒径可达5μm,组成它的一次颗粒粒径平均为200nm.在2.8~4.3V(vs.Li/Li+)0.2C条件下进行充放电测试,800℃下合成的样品的首次放电比容量最高(159.06mAh·g-1),容量损失最小,循环50次后能保持初始放电比容量的95.7;.EIS分析结果表明,800℃焙烧的样品的电化学活性最好.  相似文献   

2.
胡飘  钟胜奎  张诚  杨悦 《人工晶体学报》2015,44(8):2184-2190
以氢氧化锂,乙酸锰,乙酸镍为原料,采用一次喷雾干燥法合成了LiNi0.5Mn1.5O4前驱体.研究了烧结温度和退火温度对LiNi0.5Mn1.5O4晶形结构、形貌以及电化学性能的影响,采用X射线衍射(XRD)仪、扫描电镜(SEM)对其晶体结构和微观形貌进行表征.结果表明,在900℃下焙烧20 h,600℃下退火30 h合成的LiNi0.5 Mn1.5O4为结晶良好的尖晶石结构,颗粒具有规则的八面体形貌,由粒径在2 μm左右的小颗粒堆积而成.该样品在室温0.1C.倍率下的首次放电容量为133.7 mAh·g-1,循环50次后的容量为123.1 mAh·g-1.  相似文献   

3.
本文以醋酸盐为原料,采用溶胶凝胶法制备富锂锰基固溶体正极材料Li1.2Ni0.2Mn0.6O2.研究Co掺杂后对Li1.2 Ni0.2-x/2Mn0.6-x/2 CoxO2(x=0,0.01,0.02,0.05)材料结构以及电化学性能的影响.XRD和SEM测试表明:Co掺杂后样品结构未发生改变,均属于富锂锰基正极材料.电化学测试表明:Co掺杂能改善材料的倍率性能,提高材料的放电比容量.其中,x=0.02的材料Li1.2Ni0.19Mn0.59Co0.02O2具有最优异的电化学性能,0.05 C下的首次放电比容量由未掺杂的的217 mAh·g-1提升至332.6 mAh·g-1;0.1 C下经40次循环后放电比容量为171.6 mAh·g-1,保持率为85.5;.  相似文献   

4.
以月桂酸为碳源和表面活性剂,采用流变相法合成了LiFePO4正极材料,研究了煅烧温度、月桂酸量对LiFePO4晶形结构、形貌以及电化学性能的影响.研究表明,500℃温度、月桂酸量x=nCH3(CH2)10COOH/nLiOH=0.2条件下合成的LiFePO4正极材料为纯相的橄榄石结构,样品颗粒大小较为规则,粒径分布均匀,以0.1C倍率充放电首次放电容量为164.7 mAh·g-1,循环30次容量为151.3 mAh·g-1.  相似文献   

5.
采用优化的静电纺丝方法结合控制热解法制备出一维Co3O4/C纳米纤维,前驱纳米纤维均匀光滑,其纤维直径大约为200 nm左右,经退火处理后Co3O4颗粒镶嵌于碳纤维中.通过X射线衍射(XRD)表征,发现该Co3 O4结晶完整且无杂质.室温下用蓝电电池测试系统(CT2001A)测试其倍率性能和循环性能,首次放电比容量高达1314.5 mAh·g-1.分别以0.1 C、0.5 C、1 C、2 C、5 C、10 C、15 C和0.1 C的倍率进行充放电测试,其对应比容量分别为633 mAh·g-1、535 mAh·g-1、398 mAh·g-1、252 mAh·g-1、157 mAh·g-1、86 mAh·g-1、49 mAh·g-1和643 mAh·g-1,表现出良好的倍率性能.在倍率为0.5 C下测试其循环性能,50次循环后充电比容量为494 mAh·g-1,容量保持率为88.2;;200次循环后比容量仍能达到300 mAh·g-1,显示出优异的循环性能.这一优异的电化学性能归因于一维CNF网状结构的抗应力缓冲作用.  相似文献   

6.
以醋酸锂、醋酸锰、硝酸镍、柠檬酸、乙二醇为原料,采用燃烧辅助合成锂离子电池正极材料LiNi0.05Mn1.95O4。采用X射线衍射、扫描电子显微镜、循环伏安、恒电流充放电等技术对合成产物进行物相、形貌及电化学性能分析与测试。结果表明:采用燃烧辅助合成LiNi0.05Mn1.95O4过程中,前驱体在空气中点燃后已形成单一尖晶石相,经750℃热处理4 h后得到的LiNi0.05Mn1.95O4粉末X射线衍射峰尖锐,结晶性好,晶粒尺寸均匀。该法合成的LiNi0.05Mn1.95O4粉末首次放电比容量为117.5 mAh.g-1,经50次充放电循环后的容量保持率为95.1%,合成的LiNi0.05Mn1.95O4粉末具有良好的电化学性能。  相似文献   

7.
采用喷雾干燥法合成了3Li4Ti5O12·NiO复合负极材料.XRD结果表明,复合NiO没有改变Li4Ti5On的晶体结构.SEM结果表明,样品为直径0.5~3 μm的球形颗粒.电化学测试结果表明,3Li4Ti5O12·NiO较Li4Ti5O12倍率性能和循环性能得到极大地提高.该复合材料在0.1C、1C和20 C倍率下的放电比容量分别为372.8 mAh·g-1、252.6 mAh·g-1和204.8 mAh·g-1,在20C倍率下循环300次后的容量保持率为98.7;.  相似文献   

8.
将Al72 Ni13.4 Co14.6十次准晶作为前驱体合金,通过去合金化法制备了CoO/NiO/CoNi微纳复合材料作为锂离子电池负极材料。采用X射线衍射( XRD)、扫描电镜( SEM)等材料结构分析方法对产物进行表征。通过恒电流充放电技术研究该电极材料的电化学性能,结果表明,在200 mA·g-1电流密度下,首次充放电容量为417 mAh·g-1和617 mAh·g-1,库伦效率为67.6;,经过500圈循环后放电容量仍保持为585 mAh·g-1,表现出良好的循环性能。  相似文献   

9.
采用共沉淀法合成富锂正极材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2.研究了合成时间、配锂量、焙烧温度及焙烧时间对正极材料电化学性能的影响.研究结果表明在60℃下,合成时间为6h时制备的Li[Li0.2Mn0.54Ni0.13Co0.13]O2材料具有较高的振实密度和较好的电化学性能.配锂量不仅会影响材料的结构,同时对材料的电化学性能也有一定的影响.研究显示当Li/M(nLi/nM(M=Ni+Co+Mn))为1.25/0.8时,制备材料的首次放电比容量最高.焙烧温度和焙烧时间对Li[Li0.2Mn0.54 Ni0.13Co0.13]O2的电化学性能影响很大,焙烧温度为900℃,焙烧时间为15 h得到材料的电化学性能最优.  相似文献   

10.
在传统溶胶凝胶法的基础上,通过高温热处理LiNi0.5Mn1.5O4前驱体,合成了高性能的LiNi0.5Mn1.5O4材料.通过X射线衍射仪测试材料的结构,经过超高温热处理后,获得了晶体发育完好的LiNi0.5Mn1.5O4.经电化学测试,高温热处理显著提高了材料的循环性能.经过900℃处理的LiNi0.5Mn1.5O4首次充放电容量达到123 mAh/g,在1C倍率下循环一百次以后容量仍在121.6 mAh/g左右,容量保持率达到98.9;,高温热处理显著的改善了材料的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号