首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

2.
The effectiveness of Congo red (CR) adsorption from aqueous solutions onto MgAl-layered double hydroxide (MgAl-LDH) nanosorbents was examined in this study. MgAl-LDH was synthesized using the hydrothermal method, and physicochemical characterization was performed via powdered X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared analysis, and zeta potential measurements. For optimum adsorption of CR onto the synthesized MgAl-LDH nanosorbent, the adsorption process was employed in batch experiments. Adsorption parameters, such as the adsorbent dosage, solution pH, contact time, and initial adsorbate concentration, vary with the adsorption kinetics and isotherm mechanism. The results of the batch experiments indicated rapid adsorption of CR dye from aqueous solutions onto MgAl-LDH during the first 30 min until equilibrium was achieved at 180 min with a dye concentration of 50 mg/100 mL and MgAl-LDH adsorbent dosage of 0.05 g. The experimental adsorption data fit adequately with the monolayer coverage under the Langmuir isotherm model (R2 = 0.9792), and showed the best fit with the pseudo-second-order kinetic model (R2 = 0.996). The change in zeta potential confirmed the effective adsorption interaction between the positively charged MgAl-LDH and the negatively charged CR molecules with electrostatic interactions. This work is distinguished by the successful hydrothermal preparation of MgAl-LDH in the form of homogenous nanoscale particles (~100 nm). The prepared MgAl-LDH showed a high adsorption capacity toward anionic CR dye with a maximum adsorption capacity of 769.23 mg/g. This capacity is higher than those reported for other adsorbents in previous research.  相似文献   

3.
The ever-increasing concentration of Remazol Brilliant Violet 5R discharged mainly from textile industry had cause serious environmental issues towards human and the surrounding ecosystem. Therefore, solving the issue related to dye contamination is seriously important. In this research study, MgAl/layered double hydroxide supported on rubber seed shell biochar (RSSB) had been prepared for Remazol Brilliant Violet 5R (RBV5R) dye adsorption. BET surface area and pore volume of RSSB were found to be 132.40 m2/g and 0.0732 cm3/g, respectively with presence of LDH metals on the RSSB surfaces. The batch adsorption studies showed that RBV5R uptake capacity was significantly enhanced (125.88 mg/g) compared to pristine RSSB (58.69 mg/g) at initial RBV5R concentration, contact time, adsorption temperature and pH of 300 mg/l, 1440 min, 60 °C and pH 2, respectively. The equilibrium and kinetic adsorption data were best fitted into the Freundlich and pseudo-first order model, respectively. The thermodynamic study confirmed the RBV5R adsorption was endothermic in nature and governed by physisorption process. All these findings signified that the MgAl/LDH-RSSB is a promising adsorbent for treating wastewater containing RBV5R dye.  相似文献   

4.
Use of activated carbon (AC) prepared from rice husk and treated with anionic surfactant is investigated to eliminate cationic dye crystal violet (CV) using modelled dye solution. AC modified with anionic surfactant sodium lauryl sulfate (ACSLS) and other two surfactant namely sodium dodecyl sulfonate and hexadecyl trimethyl ammonium bromide were used for the analysis. Optimum ACSLS was analyzed and characterized using BET, XRD, SEM accompanied with XEDS, FTIR, HR-TEM and zeta potential, which confirms the sorption of CV onto ACSLS. Influence of pH, dose of adsorbent, concentration of initial dye, contact time, additive salts as well as actual water samples were investigated. Presence of NH4+, Ca2+, Mg2+, Na2+, Ca2+ and K+ cations in dye solution were having negligible (less than 4 %) influence on dye removal capacity. Study of mass transfer parameters revealed intra particle diffusion and film diffusion both played their part, whereas other kinetic studies has shown that experimental data fitted best with Pseudo 2nd order rate. Isotherm studies accompanied with error analysis revealed that Langmuir isotherm controls the adsorption equilibrium with highest capacity of CV adsorption with optimum operating conditions as pH = 6, temperature = 318 K, adsorbent dose = 100 mg/L and dye concentration = 30–60 mg/L. Study of thermodynamics and temperature analysis have shown that the sorption reaction was favourable and spontaneous with rise in temperature and endothermic in nature. Column studies are reported for varying rate of flow, depth of bed and dye concentrations along with analysis of column experimental data with various models like Yoon-Nelson, Thomas, Bohart-Adam and Clark model. Reusability (no. of cycles) of used adsorbent was studied using regeneration experiments. Analysis inferred that AC modified using surfactants can be a useful technique for enhanced adsorption capacity of dyes from aqueous solution and not much work has been reported on use of anionic surfactant modified AC for dye removal process.  相似文献   

5.
《印度化学会志》2023,100(4):100974
Removal of Methylene Blue (MB) dye using Litchi Leaves Powder (LLP) material was carried out in batch mode. Effect of the mass of the adsorbent (0.1–2.5 g/L), pH of the solution (2−12), starting concentration of MB dye (50–150 mg/L), ionic strength using NaCl (0.1–0.5 M) as an electrolyte, contact time (0–60 min) on the adsorption of MB dye was studied. To calculate pH at which LLP material surface becomes neutral point of zero charge (pHpzc) is also determined and found to be 6.48. Removal process best fit in the pseudo-second-order kinetic model as indicated by its higher R2 value (0.999). Isotherm models (Freundlich and Langmuir) were fitted to the data obtained from the experiment to understand the adsorption behaviour. Result shows that experimental data were fitted to the both isotherm models (Freundlich and Langmuir) as indicated by higher R2 value for both Freundlich (0.991) and Langmuir (0.994) model, and it was determined that LLP has a maximum adsorption capacity of 119.76 mg/g.  相似文献   

6.
The aim of present investigation was to prepare nanoparticles of chitosan and perform batch and column studies with them to study their defluoridation capacity. The nanoparticles of chitosan were characterized by techniques like FTIR, SEM, TEM, etc. Effect of initial fluoride concentration, adsorbent dose, pH and temperature were studied in the batch studies. Effect of bed height, flow rate, and inlet concentration on the column performance were studied. Performance of packed columns were described through the concept of breakthrough curves and column parameters were predicted as a function of bed heights. The breakthrough curves were defined by the Adams-Bohart and Wolborska models.  相似文献   

7.
More than 25 sorbents were tested for uptake of succinic acid from aqueous solutions. The best resins were then tested for successive loading and regeneration using hotwater. The key desired properties for an ideal sorbent are high capacity, complete stable regenerability, and specificity for the product. The best resins have a stable capacity of about 0.06 g of succinic acid/g of resin at moderate concentrations (1–5 g/L) of succinic acid. Several sorbents were tested more exhaustively for uptake of succinic acid and for successive loading and regeneration using hot water. One resin, XUS 40285, has a good stable isotherm capacity, prefers succinate over glucose, and has good capacities at both acidic and neutral pH. Succinic acid was removed from simulated media containing salts, succinic acid, acetic acid, and sugar using a packed column of sorbent resin, XUS 40285. The fermentation byproduct, acetate, was completely separated from succinate. A simple hot water regeneration successfully concentrated succinate from 10 g/L (inlet) to 40–110 g/L in the effluent. If successful, this would lower separation costs by reducing the need for chemicals for the initial purification step. Despie promising initial results of good capacity (0.06 g of succinic/g of sorbent), 70% recovery using hot water, and a recovered concentration of >100 g/L, this regeneration was not stable over 10 cycles in the column. Alternative regeneration schemes using acid and base were examined. Two (XUS 40285 and XFS-40422) showed both good stable capacities for succinic acid over 10 cycles and >95% recovery in a batch operation using a modified extraction procedure combining acid and hot water washes. These resins showed comparable results with actual broth.  相似文献   

8.
《印度化学会志》2021,98(12):100229
The coal fly ashes contain high concentration of toxic metals. The sorption plays crucial part to retard the movement of contaminants through the liner. In the present investigation to examine the potential of fine-grained soil as liner material, obtained from bank of River Ganga, was assessed in terms of its adsorption capability. Batch adsorption of Pb(II) and Cr(VI) were performed. Maximum adsorption of Cr(VI) (65.76%) at pH 3 for adsorbate and adsorbent dose of 5 ​mg/L and 2 ​g/L and maximum adsorption of Pb(II) (96.84%) at pH 5 for adsorbate and adsorbent dose of 5 ​mg/L and 1.5 ​g/L, respectively, were observed. Adsorption of Pb(II) and Cr(VI) follow Freundlich isotherm equation. The soil column studies were performed at various bed heights (2, 3 and 5 ​cm) in down flow mode. The tracer studies were conducted using NaCl to estimate the hydrodynamic parameters and they were considered as input parameters for modelling of fate and transport of contaminants in soil using HYDRUS 1D software for assessing the potential use of soil as liner material in ash pond structures.  相似文献   

9.
Casein is well known as a good protein emulsifier and beta-casein is the major component of casein and commercial sodium caseinate. Dye affinity adsorption is increasingly used for protein separation. beta-Casein adsorption onto Reactive Red 120 attached magnetic poly(2-hydroxyethyl methacrylate) (m-PHEMA) beads was investigated in this work. m-PHEMA beads (80-120 microm in diameter) were produced by dispersion polymerization. The dichlorotriazine dye Reactive Red 120 was attached covalently as a ligand. The dye attached beads, having a swelling ratio of 55% (w/w) and carrying different amounts of Reactive Red 120 (9.2 micromol . g(-1)-39.8 micromol . g(-1)), were used in beta-casein adsorption studies. The effects of the initial concentration, pH, ionic strength and temperature on the adsorption efficiency of dye attached beads were studied in a batch reactor. The non-specific adsorption on the m-PHEMA beads was 1.4 mg . g(-1). Reactive Red 120 attachment significantly increased the beta-casein adsorption up to 37.3 mg . g(-1). More than 95.4% of the adsorbed beta-casein was desorbed in 1 h in a desorption medium containing 1.0 M KSCN at pH 8.0. We concluded that Reactive Red 120 attached m-PHEMA beads can be applied for beta-casein adsorption without significant losses in the adsorption capacities.  相似文献   

10.
In this research, a novel magnetic mesoporous adsorbent with mixed phase of Fe2O3/Mn3O4 nanocomposite was prepared by a facile precipitating method and characterized extensively. The prepared nanocomposite was used as adsorbent for toxic methyl orange (MO) dye removal from aqua matrix considering its high surface area (178.27 m2/g) with high saturation magnetization (23.07 emu/g). Maximum dye adsorption occurs at solution pH 2.0 and the electrostatic attraction between anionic form of MO dye molecules and the positively charged nanocomposite surface is the main driving force behind this adsorption. Response surface methodology (RSM) was used for optimizing the process variables and maximum MO removal of 97.67% is obtained at optimum experimental condition with contact time, adsorbent dose and initial MO dye concentration of 45 min, 0.87 g/l and 116 mg/l, respectively. Artificial neural network (ANN) model with optimum topology of 3–5–1 was developed for predicting the MO removal (%), which has shown higher predictive ability than RSM model. Maximum adsorption capacity of this nanocomposite was found to be 322.58 mg/g from Langmuir isotherm model. Kinetic studies reveal the applicability of second‐order kinetic model with contribution of intra‐particle diffusion in this process.  相似文献   

11.
In the present study, batch experiments were used to determine adsorption characteristics of Watermelon Shell Biosorbent (WSB) for the uptake of anionic and cationic dyes from aqueous solution. Various factors such as initial dye concentration, adsorbent dosage, pH, contact time and temperature were systematically investigated and discussed. WSB was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The adsorption kinetics was best described by Elovich and Diffusion-Chemosorption models for Basic red 2 (BR2) (cationic dye) and Orange G (OG) (anionic dye) respectively. However, the fractional time index “α” and non-integer “n” order by Fractal-like pseudo-first order kinetic affirmed that the mechanism of interaction of both dyes with WSB was by chemical reaction. The applicability of four adsorption isotherm models for the present system was tested. The equilibrium data were found to be well represented by the Extended Langmuir isotherm equation. The monolayer adsorption capacity of WSB for BR2 and OG adsorption was found to be 125 and 27 mg/g, respectively. The effect of temperature on the adsorption process was also investigated and the values of thermodynamic parameters ΔG°, ΔH° and ΔS° revealed that the adsorption system was spontaneous.  相似文献   

12.
The present study aims to determine the adsorption behaviour of methylene blue (MB) dye based on calix[8]arene-modified lead sulphide (PbS) nanoadsorbents under optimal conditions. Response surface methodology (RSM) was executed to evaluate the interactive effect of three factors (adsorbent dosage, contact time, and pH) on the adsorption of MB dye using a central composite design (CCD). The optimised values for adsorbent dosage, contact time, and pH solution were found to be 45.00 mg of calix[8]arene-modified PbS, contact time of 180 min, and pH 6. This study reports the results of batch adsorption experiments, which include the adsorption capacity, kinetics, and isotherm of the MB adsorption process. Pseudo-first order and pseudo-second order were demonstrated for their quality to fit the data. Pseudo-second order was the best in fitting the adsorption data with the higher R2 values (R2 > 0.928), indicating chemisorption to be the mechanism of adsorption. The Langmuir and Freundlich equilibrium models were employed to determine the isotherm parameters. The equilibrium assessment illustrated that the Langmuir isotherm model fitted well with the adsorption data, and a maximum MB adsorption capacity of 11.90 mg/g was achieved. The characterisation studies with EDX, FESEM, and FTIR indicated a successful synthesis of calix[8]arene-modified PbS.  相似文献   

13.
Adsorption thermodynamic and kinetic study of disperse dye on cotton fiber modified with tolylene diisocyanate derivative was carried out under the condition of pH value 6.0 ± 0.2, initial dye concentration 0.01–3.0 g/L and liquor ratio 2,000:1. The result showed the equilibrium adsorption isotherm of disperse dye on modified cotton fiber was Langmuir—Nernst mixed Model and the saturated adsorption capacity of the turning point was 7.1429 mg/g. The calculation of the thermodynamic parameters indicated that the Van der Waals’ forces played a major role between the disperse dye and the modified cotton fiber, and the adsorption of disperse dye on the modified cotton fiber was exothermic process. Compared with the diffusion coefficient and the activation energy of disperse dye on various fibers, the disperse dye diffusion in modified cotton fiber was more difficult than that in original cotton. Meanwhile, it was found that the adsorption kinetics of disperse dye on modified cotton fiber was well agreed with a pseudo second-order kinetic model.  相似文献   

14.
Nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides with novel adsorbents for aqueous Congo red removal were synthesized by a polyacrylamide gel method and studied for their phase structure, microstructure, adsorption performance, and multiferroic behavior. The phase structure and purity analysis revealed that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides presented a spinel-type cubic structure, and the formation of a secondary phase such as Cr2O3, MgO, ZnO, or Co3O4 was not observed. The microstructure characterization confirmed that the spinel-type MCr2O4 oxides grew from fine spherical particles to large rhomboid particles. Adsorption experiments of spinel-type MCr2O4 oxides for adsorption of Congo red dye were fitted well with the pseudo-second-order kinetics. The adsorption capacity of the ZnCr2O4 oxide (44.038 mg/g, pH 7, temperature 28 °C, initial dye concentration 30 mg/L) was found to be higher than that of MgCr2O4 oxide (43.592 mg/g, pH 7, temperature 28 °C) and CoCr2O4 oxide (28.718 mg/g, pH 7, temperature 28 °C). The effects of initial adsorbent concentration, initial dye concentration, pH, and temperature between the ZnCr2O4 oxide and Congo red dye at which optimal removal occurs, were performed. The thermodynamic studies confirmed that a high temperature favors the adsorption of Congo red dye onto ZnCr2O4 oxide studied. The nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides that exhibited high adsorption performance for adsorption of Congo red dye can be ascribed to the synergistic effect of electrostatic interaction, pore filling, and ion exchange. The present work suggested that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides have excellent adsorption performance and multiferroic behavior, which shows potential applications for removal of the Congo red dye from wastewater, magnetic memory recording media, magnetic sensor, energy collection and conversion device, and read/write memory.  相似文献   

15.
A novel adsorbent, Fe‐Mn‐Zr metal oxide nanocomposite was synthesized and investigated for removal of methyl orange (MO) and eosin yellow (EY) dyes from binary dye solution. The magnetic nanocomposite has shown surface area of 143.01 m2/g and saturation magnetization of 15.29 emu/g. Optimization was carried out via response surface methodology (RSM) for optimizing process variables, and optimum dye removal of 99.26% and 99.55% were obtained for MO and EY dye, respectively with contact time 62 min, adsorbent dose 0.45 g/l, initial MO concentration 11.0 mg/l, and initial EY concentration 25.0 mg/l. A feed forward back propagation neural network model has shown better prediction ability than RSM model for predicting MO and EY dye removal (%). Adsorption process strictly follows Langmuir isotherm model, and enhanced adsorption capacities of 196.07 and 175.43 mg/g were observed for MO and EY dye, respectively due to synergistic effects of physicochemical properties of trimetal oxides. Surface adsorption and pore diffusions are the mechanisms involved in the adsorption as revealed from kinetic studies.  相似文献   

16.
Electrospinning method was used to synthesize porous SiO2 nanofibers. The adsorption of Methyl Orange and Safranin O by porous SiO2 nanofibers was carried out by varying the parameters such as pH, contact time, adsorbent dose, dye concentration, and temperature. Equilibrium adsorption data followed Langmuir isotherms. Kinetic adsorption followed second-order rate kinetics model. The maximum adsorption capacity for Methyl Orange and Safranin O was found to be 730.9 mg/g and 960.4 mg/g, respectively. Acidic pH was favorable for the adsorption of Methyl Orange while basic pH was favorable for the adsorptions of Safranin O. Modeling study suggested the major mode of adsorption, while thermodynamic study showed the endothermic reactions. This effort has pronounced impact on environmental applications of SiO2 nanofibers as auspicious adsorbent nanofibers for organic material from aqueous solution.  相似文献   

17.
In this study, the preparation of magnetic Fe3O4/ZIF-8 (MFZ) and its adsorption properties for Cd(II) from water were investigated. Various characterizations demonstrate that the as-prepared MFZ has well magnetic-separation performance and thermal stability. In batch adsorption tests, the effects of pH, initial concentration, and adsorbent dosage were evaluated. According to the findings, when the pH is 7 and the dosage is 150 mg/L, the adsorption capacity for a 40 mg/L Cd(II) solution reaches 102.3 mg/g in 180 min. The Cd(II) adsorption processes was found to correspond to pseudo-first-order kinetics and Langmuir model according to the adsorption kinetics and isotherms. The Langmuir model predicted a maximal saturation adsorption capacity of 160.26 mg/g at 298 K. Thermodynamic analysis revealed that the Cd(II) adsorption is an endothermic, spontaneous process. Ion exchange, coordination reaction, and electrostatic interaction are all involved in Cd(II) adsorption by MFZ. The optimum conditions for Cd(II) adsorption were proposed and confirmed in accordance with the results of the response surface optimization experiments. Furthermore, regeneration tests demonstrate the great repeated regeneration ability of MFZ. According to the anticipated production cost, treating wastewater with a Cd(II) concentration of 40 mg/L would cost roughly US$ 8.35/m3. MFZ showed good potential for Cd(II) removal from water.  相似文献   

18.
This study described adsorption of uranium(VI) by citric acid modified pine sawdust (CAMPS) in batch and fixed-bed column modes at 295 K. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Koble–Corrigan and Dubinin–Radushkevich isotherm models. The results indicated that the Langmuir and Koble–Corrigan models provided the best correlation of the experimental data. The Elovish model was better to fit the kinetic process, which suggested that ion exchange was one of main mechanism. The effective diffusion parameter D i values indicated that the intraparticle diffusion was not the rate-controlling step. In fixed-bed column adsorption, the effects of bed height, feed flow rate, and inlet uranium (VI) concentration were studied by assessing breakthrough curve. The Thomas, the Yan and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The results were implied that CAMPS may be suitable as an adsorbent material for adsorption of uranium (VI) from an aqueous solution.  相似文献   

19.
The study is concerned with synthesizing copper oxide nanoparticles with leaf extract Eucalyptus Globoulus. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) revealed that the green synthesized copper oxide nanoparticles are spherical and have a mean particle size of 88 nm, with a negative zeta potential of ?16.9 mV. The XRD graph showed the crystalline and monoclinic phases of CuO nanoparticles. The average crystalline size around 85.80 nm was observed by the Debye–Scherrer formula. The adsorption characteristics of the nano-adsorbents were investigated using methyl orange, and the adsorption efficiency at room temperature attained 95 mg/g. Copper oxide nanoparticles (CuO NPs) adsorb methyl orange dye most effectively at pH 4.5 when the dye is applied in quantities of 0.04 g/50 mL. Box–Behnken design (BBD) in response surface methodology (RSM) was used to optimize various process parameters, such as pH solution (X1: 2 – 11), adsorbing dose (X2: 0.01 – 0.08 g/L), [MO] dye concentration (X3: 10 – 80 mg/L). Overall, the adjusted coefficient of determination (R2) value of 0.99 demonstrated that the used model was quite appropriate, and the chosen RSM was effective in optimization the decolorization conditions of MO.  相似文献   

20.
Toxic dye removal, one of the most serious and common industrial pollutants released into natural water, is a critical issue for modern civilization. In this study, a series of UiO-66 composites was synthesized with addition of HKUST-1 using solvothermal method, which was used to remove RBBR dye. The structure, morphology and surface area of the composites were studied by several analyses. HK(5)/UiO-66 possessed a specific surface area of 557.63 m2/g and showed an adsorption capacity of 400 mg/g, higher than that of UiO-66 (261.92 mg/g) with a contact time of 50 min. Several adsorption parameters that influenced RBBR removal efficiency were investigated, such as pH, initial dye concentrations, and temperature. All the composites followed pseudo-first order kinetics and Langmuir isotherm adsorption. Moreover, the adsorption process occurred exothermically and spontaneously, indicating that the adsorption process was advantageous in terms of energy. The possible adsorption mechanism and cost analysis of the adsorbent were also studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号