首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The heat transfer on a delta wing with blunt edges and various catalytic surface properties in a hypersonic air flow at 40 ° and 60 ° angles of attack has been investigated by a numerical flow model for a viscous reacting gas in the shock layer near the windward side of blunt elongated bodies.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 196–199, September–October, 1984.  相似文献   

2.
This paper gives the results of numerical calculations characterizing the effect of variation of the shock layer parameters on the heat transfer in the case of a multicomponent nonequilibrium-dissociating air on a wall with finite catalycity in the vicinity of the stagnation point of a spherical blunt body. Similar results for the case of a binary mixture can be found in [1–3]. It is shown that a consideration of the variation of the parameters in the nonequilibrium shock layer leads to a significant increase in heat flux to the noncatalytic wall in comparison with the theory of an asymptotically thin nonequilibrium boundary layer with equilibrium parameters on its outer boundary.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 144–147, March–April, 1971.The author thanks V. V. Lunev for useful comments in the discussion of this work.  相似文献   

3.
The radiative heat transfer problem for bodies traveling through the earth's atmosphere, as formulated in [1, 3], is considered in the case of low altitudes, i.e., for high gas densities and optical thicknesses in the shock layer. These factors require the use of improved methods of calculation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 182–184, May–June, 1991.  相似文献   

4.
The case of supersonic flow over a blunt body when another gas is injected through the surface of the body in accordance with a given law is theoretically investigated. If molecular transport processes are neglected, the flow between the shock wave and the surface of the body should be regarded as two-layer, that is, as consisting of the flow in the shock layer between the shock wave and the contact surface and the flow in the layer of injected gas. A numerical solution of the problem is obtained near the front of the body and its accuracy is estimated. Approximate analytic solutions are obtained in the injected-gas layer: a constant-density solution and a solution of the boundary-layer type in the local similarity approximation. Near the flow axis the numerical and analytic solutions are fairly close, but at a distance from the axis the assumptions made reduce the accuracy of the approximate solutions. The flow in question can serve as a gas-dynamic model of a series of problems describing the radiant heating of blunt bodies in a hypersonic flow. In the presence of intense radiative heat transfer, vaporization is so great that the thickness of the vapor layer is comparable with the thickness of the shock layer. Moreover, the thermal shielding of various kinds of obstacles in channels through which a radiating plasma flows can be organized by means of the forced injection of a strong absorber. The formulation of a similar problem was reported in [1], but the results of the solution were not given. A two-layer model of the flow of an ideal gas over a blunt body was used in [2, 3] for the analysis of radiative heat transfer. In [2] the neighborhood of the stagnation point is considered. In [3] preliminary results relating to two-layer flow over blunt cones are presented. The solution is obtained by Maslen's approximate method.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 89–97, March–April, 1972.  相似文献   

5.
An analytic solution is obtained in the work in a Newtonian approximation [1] for the flow-past problem for a plane blunt body by a steady-state uniform hypersonic inviscous space-radiating gas flow. The hypersonic flow-past problem for axisymmetrical blunt bodies by a nonviscous space-radiating gas has been previously considered [2–4]. In this case a satisfactory solution of the problem was obtained even in a zero-th approximation by decomposing the unknown values in terms of a parameter equal to the ratio of gas densities before and after passage of the shock wave. The solution of the problem in a zero-th approximation with respect to in the case of flow-past of plane blunt bodies does not turn out to be satisfactory, since the departure of the shock and the radiant flux to the body as gas flows into the shock layer turns out to be strongly overstated under nearly adiabatic conditions. Freeman [5] demonstrated that results may be significantly improved for flow-past of a plane blunt body by a nonradiating gas if a more precise expression is used for the tangential velocity component expressed in a new approximation with respect to the parameter . This refinement is applied in this work for solving the flow-past problem for a plane blunt body by a space-radiating gas. The distribution of the gasdynamic parameters in the shock layer, the departure of the shock wave, and the radiant heat flux to the surface of the body are found. The solution obtained is analyzed in detail for the example of flow-past regarding a circular cylinder.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 3, 68–73, May–June, 1975.  相似文献   

6.
An investigation is made into the characteristics of coupled heat and mass transfer using the theory of a nonequilibrium viscous shock layer in the case of an axisymmetric blunt body moving along a given trajectory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 146–153, March–April, 1984.  相似文献   

7.
Results are presented in this article of numerical calculations of a viscous shock layer with the associated heat exchange in the vicinity of the critical point of a spherical blunt body taken into account in the presence of nonequilibrium chemical processes in the shock layer and on the surface of the body about which the flow takes place. A number of papers [1–4], in which specification of the surface temperature of the obstacle was utilized, have been devoted to the numerical investigation of a nonequilibrium viscous shock layer. At the same time the surface temperature of a body varies in actual flight due to heating, and together with this there is catalytic activity of the material, which appreciably complicates the problem and necessitates the simultaneous treatment of the course of processes in the gaseous and solid phases. The use of a separate formulation is difficult in this case, since the formulas for the thermal flux from the gaseous phase are of an estimative nature [5] when a volume nonequilibrium chemical reaction is present for a surface having an arbitrary catalytic activity. Taking account of the associated heat exchange has been done before for a number of problems of boundary-layer theory [6, 7], and in this case it has permitted determining the characteristics which are most important from the practical standpoint under conditions of flight along a specified trajectory, as well as under specified time-independent conditions of flight at altitudes at which the approximation of a viscous shock layer is valid. The effect of catalytic activity is discussed for a number of surface materials, and it is shown that the use of the formulas of boundary layer theory can appreciably distort the behavior of the surface temperature as a function of time for a certain altitude range.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 108–114, May–June, 1979.  相似文献   

8.
A three-dimensional flow of dissociating air past blunt bodies is investigated in the framework of the thin viscous shock layer theory. Multicomponent diffusion and homogeneous chemical reactions, including dissociation, recombination, and exchange reactions, are taken into account. The generalized Rankine-Kugoniot conditions are specified on the shock wave and the conditions which take into account the heterogeneous catalytic reactions, on the surface of the body. The viscous shock layer equations are solved together with the heat equations inside the coating, which is carbon with a deposited thin film of SiO2, or quartz. The case of a thermally insulated surface is also considered. The problem for the case of the motion of a body along the re-entry trajectory into Earth's atmosphere is investigated numerically. The temperature of the surface and the heat flux toward it are given as a dependence on the height (tine) of the flight for different cases of the specification of the catalytic reactions. It is shown that the difference between the heat fluxes towards the thermally insulated surface and the fluxes toward the heat-conducting surface in the neighborhood of the stagnation point is of the order of 6–12% for all the cases considered. This makes it possible to decouple the solution of the problem of heat conduction in the body.Translated fron Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 140–146, November–December, 1985.deceased  相似文献   

9.
The authors consider the problem of supersonic unsteady flow of an inviscid stream containing shock waves round blunt shaped bodies. Various approaches are possible for solving this problem. The parameters in the shock layer on the axis of symmetry have been determined in [1, 2] by using one-dimensional theory. The authors of [3, 4] studied shock wave diffraction on a moving end plane and wedge, respectively, by the through calculation method. This method for studying flow around a wedge with attached shock was also used in [5]. But that study, unlike [4], used self-similar variables, and so was able to obtain a clearer picture of the interaction. The present study gives results of research into the diffraction of a plane shock wave on a body in supersonic motion with the separation of a bow shock. The solution to the problem was based on the grid characteristic method [6], which has been used successfully to solve steady and unsteady problems [7–10]. However a modification of the method was developed in order to improve the calculation of flows with internal discontinuities; this consisted of adopting the velocity of sound and entropy in place of enthalpy and pressure as the unknown thermodynamic parameters. Numerical calculations have shown how effective this procedure is in solving the present problem. The results are given for flow round bodies with spherical and flat (end plane) ends for various different values of the velocities of the bodies and the shock waves intersected by them. The collision and overtaking interactions are considered, and there is a comparison with the experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 141–147, September–October, 1984.  相似文献   

10.
The study examines the screening of the radiative heat flux in conditions of hypersonic flow around blunt bodies with ablated carbon-based coverings. In contrast to the studies already known [1–3], allowance is made for the presence of condensed microscopic particles in the products of ablation. In [4] the problem of radiative transfer is considered in a layer of two-phase ablation products with parametrically prescribed dimensions, particle temperature, and layer thickness. The present study uses a closed system of equations which describes the processes of heat and mass transfer. This gives rise to considerable differences in the numerical results, according to the degree of screening.Translated fron Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–166, November–December 1985.deceased  相似文献   

11.
The heat transfer in the vicinity of the critical point is investigated for hypersonic air flow around a blunt body. The gas-dynamical conservation equations are solved simultaneously with the radiative transport equation in integral form. Allowance is made for the viscosity, heat conduction, and the actual radiation parameters of air, including spectral line emission. Profiles are obtained for the thermodynamic variables along the critical line. The dependence of the radiative and convective components of the aerodynamic heating on the velocity and pressure ahead of the shock front as well as the radius of curvature of the blunt nose section is discussed. Approximate relations having the form of similarity laws are derived for the heat fluxes in the vicinity of the critical point. The limits of applicability of the thermodynamic equilibrium approximation in the shock-compressed layer are discussed. The influence of absorption of radiation from the compressed layer by the cold freestream on the aerodynamic heating is considered. Attention is given in this case to the dependence of the spectral absorption coefficient for the cold air on the intensity of the radiation incident upon it.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 112–123, September–October, 1972.  相似文献   

12.
This article discusses relaxation behind shock waves in air at velocities from 8 to 12 km/sec. Profiles are obtained for the parameters of the gas behind the front. The populations of the radiating states of the atoms and the molecules are calculated. In a number of spectral ranges the intensity of the radiation passes through a maximum exceeding the equilibrium level. A comparison is made with experimental data obtained in shock tubes. The radiant heat fluxes from the relaxation zone are calculated. The contribution of this radiation to the radiative heating of blunt bodies with flow around them at hypersonic velocities is evaluated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 4, pp. 161–174, July–August, 1970.The authors thank their co-workers in the High Temperature Institute of the Academy of Sciences of the USSR, above all, L. M. Biberman, V. S. Vorob'ev, A. N. Larar'kov, and G. É. Norman for their valuable evaluations and for their interest in the work.  相似文献   

13.
The motion of blunt bodies through two-phase media at high supersonic velocities is accompanied by strong heating of particles when they enter the shock layer. Because the ratio of the heating time of nonmetallic particles to the time of their thermal relaxation with the gas exceeds unity, large temperature gradients are developed in the particles, which are stressed and deformed and under the influence of the force and inertial loads they can then shatter, which significantly changes their force and thermal effect on the supersonic body. A special case of this problem — the shattering of ice particles in a shock layer under the influence of pressure forces — was investigated in [1]. In the present paper, the results of numerical calculations and known analytic solutions are used in the development of an approximate method for estimating the stresses that arise in spherical particles. Simple criteria are established for determining when the tensile stresses in the particles reach critical values above which the particles may shatter. As an example, the distribution of the temperature and stresses in silicon dioxide particles is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 66–73, January–February, 1981.We thank V. G. Pchelkina for assistance in calculating the temperature fields.  相似文献   

14.
The laws of heat transfer associated with the interaction of underexpanded supersonic gas jets and obstacles or blunt bodies have been investigated, for example, in [1–3]. Similar problems of nonuniform flow occur when bodies move in the wake behind other bodies; however, in this case the laws of heat transfer have so far received little attention [4–8]. It has been established that for a certain Reynolds number and flow nonuniformity parameters a zone of reverse-circulatory flow develops near the front of the blunt body. However, the conditions of transition to separated flow have not been determined. This paper presents a self-similar solution of the equations of the viscous shock layer near the stagnation line in supersonic flow past an axisymmetric blunt body located behind another body. On the basis of this solution a separationless flow criterion is proposed. The effect of the nonuniformity and the Reynolds number on the shock standoff distance, the convective heat flux and the friction drag of the blunt body is investigated. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–125, November–December, 1986. In conclusion the authors wish to thank I. G. Eremeitsev for useful suggestions and G. A. Tirskii for discussing their work.  相似文献   

15.
During hypersonic gas flow past a blunt body with a velocity on the order of the escape velocity or more, the gas radiation in the disturbed region behind the shock wave becomes the primary mechanism for aerodynamic heating and has a significant effect on the distribution of the gasdynamic parameters in the shock layer. This problem has been considered from different points of view by many authors. A rather complete review of these studies is presented in [1–4].In earlier studies [5, 6] the approximation of bulk emission was used. In this approximation, in order to account for the effect of radiative heat transfer a term is added in the energy equation which is equivalent to the body efflux, whose magnitude depends on the local thermodynamic state of the gas. However, the use of this assumption to solve the problem of inviscid flow past a blunt body leads to a singularity at the body [7, 8]. To eliminate the singularity, account is taken of the radiation absorption in a narrow wall layer [7], or the concept of a viscous and heat-conductive shock layer is used [8]. A further refinement was obtained by Rumynskii, who considered radiation selectivity and studied the flow of a radiating and absorbing gas in the vicinity of the forward stagnation point of a blunt body.In the present paper we study the distribution of the gasdynamic parameters in the shock layer over the entire frontal surface of a blunt body in a hypersonic flow of a radiating and absorbing gas with account for radiation selectivity.  相似文献   

16.
Gudzovskii  A. V.  Karasev  A. E.  Kondranin  T. V. 《Fluid Dynamics》1981,16(3):408-414
The results are given of calculations of radiative and convective heat transfer in a radiating H-He shock layer in the neighborhood of the stagnation point of a blunt body when graphite ablation products are blown from the surface. It is found that under the conditions in the shock layer characteristic for motion of the body in the atmosphere of Jupiter [3] the dependence of the convective flux on the blowing rate is essentially nonmonotonic. The maximal value is comparable with the radiative flux to the surface under these conditions. It is shown that a decisive part in the mechanism which increases the convective flux is played by the presence near the surface of particles which effectively absorb radiative energy in the spectral regions in which an appreciable radiation flux reaches the boundary layer; the difference between the transport properties of the blown and the oncoming gases is also important.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 106–113, May–June, 1981.  相似文献   

17.
The basic laws of viscous homogeneous gas flow at high supersonic speeds past smooth blunt bodies with a permeable surface are investigated within the framework of the thin viscous shock layer model. An efficient numerical method of solving these equations, which makes it possible to consider cases of flow past bodies at angles of attack and slip, when there are no planes of symmetry in the flow, is proposed. Some results of calculating the flow past a triaxial ellipsoid with an axial ratio of 103n73 at angles of attack =0–45° and slip angles =0–45° over a broad interval of Reynolds numbers are presented as an example. The effect of the principal determining parameters of the problem on the flow structure in the shock layer and the surface friction and heat transfer coefficients is analyzed. An expression for calculating the heat fluxes to the impermeable surface of smooth blunt bodies in a supersonic homogeneous viscous gas flow over a broad interval of Reynolds numbers is proposed on the basis of the solutions obtained and the results of other authors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 150–158, March–April, 1989.  相似文献   

18.
Flow past blunt bodies entering planetary atmospheres at hypersonic velocities is studied. A method for calculating the flowfield near the body nose is developed which allows for radiative heat transfer in the P 1 approximation of the spherical harmonics method but does not take gas viscosity and heat conduction into account. The solution is constructed on the basis of a two-layer flow model, with account for intense injection of ablation products from the body nose due to radiative heat fluxes from the shock layer. The advantages of the method are that the multi-dimensional character of the radiation field is taken into account and the general problem of radiation gasdynamics is solved on the basis of a unified algorithm. The flow past a spherical segment and a spherically-blunted cone re-entering the Earth’s atmosphere at a velocity of 20 km/s and an entry angle of ?10° is calculated.  相似文献   

19.
A study is made of hypersonic three-dimensional flow of a viscous gas past blunt bodies at low and moderate Reynolds numbers with allowance for the effects of slip and a jump of the temperature across the surface. The equations of the three-dimensional viscous shock layer are solved by an integral method of successive approximation and a finite-difference method in the neighborhood of the stagnation point. In the first approximation of the method an analytic solution to the problem is found. Analysis of the obtained solution leads to the proposal of a simple formula by means of which the calculation of the heat flux to a three-dimensional stagnation point is reduced to the calculation of the heat flux to an axisymmetric stagnation point. A formula for the relative heat flux obtained by generalizing Cheng's well-known formula [1] is given. The accuracy and range of applicability of the obtained expressions are estimated by comparing the analytic and numerical solutions. Three-dimensional problems of the theory of a supersonic viscous shock layer at small Reynolds numbers were considered earlier in [2–5] in a similar formulation but without allowance for the effects of slip.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 143–150, March–April, 1988.  相似文献   

20.
The combined influence of unsteady effects and free-stream nonuniformity on the variation of the flow structure near the stagnation line and the mechanical and thermal surface loads is investigated within the framework of the thin viscous shock layer model with reference to the example of the motion of blunt bodies at constant velocity through a plane temperature inhomogeneity. The dependence of the friction and heat transfer coefficients on the Reynolds number, the shape of the body and the parameters of the temperature inhomogeneity is analyzed. A number of properties of the flow are established on the basis of numerical solutions obtained over a broad range of variation of the governing parameters. By comparing the solutions obtained in the exact formulation with the calculations made in the quasisteady approximation the region of applicability of the latter is determined. In a number of cases of the motion of a body at supersonic speed in nonuniform media it is necessary to take into account the effect of the nonstationarity of the problem on the flow parameters. In particular, as the results of experiments [1] show, at Strouhal numbers of the order of unity the unsteady effects are important in the problem of the motion of a body through a temperature inhomogeneity. In a number of studies the nonstationary effect associated with supersonic motion in nonuniform media has already been investigated theoretically. In [2] the Euler equations were used, while in [3–5] the equations of a viscous shock layer were used; moreover, whereas in [3–4] the solution was limited to the neighborhood of the stagnation line, in [5] it was obtained for the entire forward surface of a sphere. The effect of free-stream nonuniformity on the structure of the viscous shock layer in steady flow past axisymmetric bodies was studied in [6, 7] and for certain particular cases of three-dimensional flow in [8–11].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 175–180, May–June, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号