首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]指出了对洛仑兹力公式中v存在三种理解:(1)电荷相对于磁场的速度;(2)载流导体中电荷相对于导体的速度;(3)电荷相对于观察者的速度,并通过具体例子说明了第(3)种理解才是正确的.本文拟由洛仑兹力公式形式的不变性,进一步说明v是相对于观察者的速度。进而指出公式中的E和B也是相对于观察者而言的. 设二个惯性系J和S’,S’相对于S沿X轴以u速度运动,如图一所示.在S系中运动电荷q的速度为v,则它在电磁场中受到的洛仑兹力为 如在S’系中来观察,我们要证明它受到的洛仑兹力与(1)式具有相同形式,即 f’=q’E’+q’v’×B’(2)式中各带撇的…  相似文献   

2.
关于安培力与洛伦兹力,现行中专物理教材提到:“(磁场)作用在通电导线上的安培力,只不过是作用在运动电荷上的力(洛伦兹力)的宏观表现”.高级中学课本《物理》甲种本上说“安培力可以看成是这一段通电导体中所有定向运动的电荷所受洛伦兹力的总和”.那么定向运动的电子所受到的洛伦兹力是怎样成为载流导体的安培力的?本文就此问题谈谈自己的一点看法. 1 磁场中静止的载流导体如图所示的载流导体,电流强度为I,处在方向向左的匀强磁场B中,因为载流导体中每个定向运动的电子,都要受到一个洛伦兹力f_L的作用,其大小F_L=evB,方向沿 Z,这导致导体A侧出现负电荷的堆积,B侧出现正电荷的堆积,结果在载流导体上下两侧产生一个U_(BA)的电位差,形成一个沿 Z的横向电场E,故每个定向运动的电子受到一个沿—Z  相似文献   

3.
洛仑兹关系式 F=qE+qv×B通常也称为洛仑兹力公式,它与麦克斯韦方程组一起,给出了电动力学的基本规律.在宏观电磁现象中,洛仑兹力公式和麦克斯韦方程组是普遍成立的,并适用于一切惯性参考系,具有相对论协变性. 公式F=qE + qv×B中的速度v,与E=0时,公式F=qv×B中的速度v,含义完全相同,是指电荷相对于观察者的速度,也就是电荷相对于与观察者固接的参考系的速度.但最近有的作者又一次强调[1],它也是电荷相对于磁场的速度,应当把“总是误认为公式中的v是带电粒子相对于导体或磁场的速度,实际上应当是指相对于观察者的速度[2]”改为“总是误…  相似文献   

4.
运用电磁感应定律第二种表述的两个误解   总被引:1,自引:0,他引:1  
电磁感应定律第二种表述告诉我们,磁场变化要引起感生电动势,导体运动要引起动生电动势。运用这个关系时,存在两个误解:①关于“磁场变化”,只注意了磁场所在区域的B是否随时间变化,没有注意到它也包括磁场分布区域在空间的位置是否随时间变化。②关于“导体运动”,只注意了它相对于磁场的运动速度,没有注意到更本质的是相对于观察者的速度, 在关于“电磁感应佯谬”的讨论中,一些作者曾多次提到永磁体从弹簧夹中拉出的实验[1]。在图一中,磁体被拉出时,感应电动势为零。这个结论是怎样得到的呢?一般认为,根据电磁感应定律的第二种表述:第一,…  相似文献   

5.
一、缘起 在普通物理教学中,可以在狭义相对论的基础上,通过运动电荷之间的相互作用,从理论上引入磁场概念,目前见到这样做的教科书,一本是A.P.French的“SpecialRelativity(狭义相对论)”(1968)。它根据下述基本事实:静止的源电荷对另一电荷 (不管它以多大速度运动)的作用力都由库仑定律给出,并利用了狭义相对论坐标变换关系。它导出运动的源电荷对另一运动电荷的作用力,除了电场E的作用外,还有一种力可归之于另一种场,叫磁场。该磁场B可根据下述定义由电场E给出式中v是运动源电荷的速度,该书还在此基础上讨论了直线电流的磁场分布。由…  相似文献   

6.
第四章研究稳恒磁场,主要讨论两个问题.第一是建立对稳恒磁场的描述,阐明它的规律和性质.第二是磁场对处于其中的载流导线和运动电荷施加作用力的问题.虽然稳恒磁场与静电场是不同性质的场,它们有不同规律,但它们都是矢量场,在不少问题上有一定的类似之处.因此在这部分的学习中,采用对比的方法,可以收到较好的效果. 一、稳恒磁场的性质及计算 稳恒电流产生的磁场称为稳恒磁场。载流导线间的相互作用、运动电荷与电流之间的相互作用都是通过磁场实现的.磁场与静电场一样,都与电荷相联系,但静电场是与静止电荷相联系,而稳恒磁场则是与连续匀速…  相似文献   

7.
本文通过对载流导体附近运动电荷受力的再讨论,直观地展现了电场与磁场的相对性与整体性.  相似文献   

8.
讨论一电荷沿x轴以初速υ垂直射入一匀强电场E0中(图一中的z方向).取电场E0为s’(x’,y’,z’t’)静止坐标系,观察者站在电荷q(s系)上看,s’系相对于s系以速度(-υ)运动,这时观察者将观测到原来的电场E0不再是E0.由电磁场的变换公式,在o’与o重合,即t=0时刻,在s系测得的电磁场为:式中 但在s’系看:把(2)式中的各分量代入(1)的变换式中变得s系中电磁场的分量这样站在s系看电行q的运动方程应是:但同时电场E0以速度-υ向左匀速运动,它的运动方程为 x=-υt. 于是电荷q相对于E0的等效运动方程是 解之得电荷的轨道方程:是一抛物线,轨道向x轴上…  相似文献   

9.
看了《大学物理》所载“通量法则诸反例的两个特点”[1]一文后,笔者认为其中存在几个问题,并且还涉及我的一篇文章[2],我愿在此一讲发表些意见.一、文[1]认为,在磁场B中运动的大块导体,其内部的自由电荷q在承受洛仑兹力q(υ+u)xB的同时,还受到一个来源于电子与晶格碰撞的约束力-quxB,这里。是电荷相对于导体运动的速度,υ是运动导体提供的牵连速度.我们认为,在细导线里,电子的定向运动必须平行于导线元dl,即u// dl,因而受到相应的约束力-quxB,它与霍耳力quxB相抵消.但这种约束并不来源于电子与晶格的碰撞,而来源于导线侧面积累的电荷所提…  相似文献   

10.
电磁感应电动势分动生电动势和感生电动势两种。当闭合线圈与某一稳定磁场作相对运动时,在线圈中会感应出电动势。与磁场相对静止的观察者认为,这电动势是动生电动势;与线圈相对静止的观察者则认为,这电动势是感生电动势。这样的动生电动势和感生电动势在数值上是否相等?如果我们另选一个参考系,使得磁场和线圈都相对于它运动,那末,在线圈中将同时具有动生电动势和感生电动势,总电动势的数值与什么有关?动生电动势和感生电动势是相对的还是独立的?这些问题将在下面分别加以研究。 一、设坐标系S相对于磁体静止,任意形状的闭合线圈在磁场中…  相似文献   

11.
一、前言 在静止条件下,某孤立导体上的电荷将会在导体表面自动分布,以使它在导体内产生的电场为零,这是静电学中的一个基本结论.如果让导体转动,则应预期由于对传导电子的离心作用以及因电荷运动而产生的磁场,将会引起电有在导体中重新分布,并且导体中还会出现空间电荷. 我们将考虑下面的问题.让带有一个净电荷的某孤立导体具有一恒定的角速度.在稳定条件下,找出导体中的电荷分布和电磁场. 我们还未看到处理这个问题的文章,但有人考虑过三类与之有关的问题,而且都涉及转动体的电磁场理论. 首先,单极感应的问题已在本世纪的前二十年中研究过…  相似文献   

12.
黄迺本 《大学物理》2006,25(1):11-16
指出了某些文献中的问题,根据电荷守恒定律,证明了由转动磁场所导致的电场E=±v×B的散度,并非与真实的电荷体密度有本质上的关联,而只是一种相对论效应.并根据电磁场变换原理,给出了轴对称导体在均匀稳恒磁场中转动时表面电荷密度及其电磁场的求解方法,得出了在均匀稳恒磁场中转动的导体球表面电荷密度及其电磁场.  相似文献   

13.
崔翔 《物理学报》2020,(3):87-98
传统的载流细导体段模型是分析导体闭合回路磁场的基本模型,尽管不满足电流连续性定律,但适用于导体闭合回路的磁场分析.然而,对于工程中只关注导体闭合回路中某一局部的多分支导体段并联的电流分配问题,传统模型将不能完整地反映各分支导体段之间磁场的相互作用.为此,现有文献提出的位移电流模型,满足了电流连续性定律,较好地解决了上述问题,但是,仍然存在理论不完整、不自洽以及计算公式复杂等问题.本文提出载流细导体段的传导电流模型,确保了载流细导体段在段内、段端及段外的电流连续性.推导出物理内涵更加深刻的总磁场微分方程和矢量磁位计算公式.提出载流细导体段传导电流模型磁场能量和电感的计算公式,极大地降低了计算复杂度,弥补了现有文献的不足.本文算例从模型、公式、计算等方面验证了本文理论和计算公式的正确性.  相似文献   

14.
均匀磁场中转动的导体上电荷的分布   总被引:8,自引:5,他引:3  
指出了在均匀磁场中运动的轴对称导体上分布的电荷所产生的附加磁场是很弱的,在忽略附加磁场时导体内的电荷是均匀分布的,并求出导体球上电荷分布。  相似文献   

15.
《大学物理》2021,40(9)
截面形状不同的载流导体在空间中的磁场分布以及对其他导体的安培力,在实际工程应用中有重要意义.本文从理论上分析计算无限长矩形截面和圆形截面载流导体磁场分布,进而对两根平行的矩形截面导体间、圆形截面导体间的安培力进行分析,并利用Matlab软件对磁场分布和安培力做了模拟.结果表明:矩形截面载流导体的磁感线呈近似椭圆状;两平行矩形截面载流导体间的安培力不仅与距离、截面尺寸有关,当距离、截面尺寸一定时还和放置的方向有关.当边长比a/b1时,安培力小于同样面积和载流密度情况下的圆截面导体,且a/b值越小,作用力越大,当a/b1时,大于同样载流情况下的圆截面导体,但随着导体间距增大作用力的差别越来越小.  相似文献   

16.
讨论恒定载流导体内的电荷分布问题.从霍尔效应出发,以无限长圆柱形载流导体为例,导出该导体内的电荷分布,并且给出任意形状的载流导体内的电荷密度公式.  相似文献   

17.
电荷流是由电荷的定向运动形成的,根据毕奥-萨伐尔定律,得到等效电流,进而可以计算出磁场的磁感应强度公式。本文采用单个运动电荷的磁场公式得到电荷流在空间中某点产生的磁场,并阐述了根据狭义相对论得出高速运动的电荷流对应磁场的变化。  相似文献   

18.
在任何一本物理学书中,几乎都有对于载流螺线管的磁场的叙述.然而这些书中着重描写的大多是关于螺线管内部的磁场,对于螺线管外的磁场这个问题,尚有进一步讨论之必要.一、问题的提出 有这样一个问题: 在载流螺线管外面环绕一周(见图11)的环路L上,φB·dl等于多少?[1] 对于这个问题,通常有两种解释,一曰:如果螺线管是密绕的,那末φB· dl= 0;二曰:如果认为螺线管并非理想的密绕,必有漏磁通存在,因而中φB·dl=u0i(其中i为导体中通过的电流).这两种解释那个正确呢?一般说来,在处理有关载流螺线管的问题时,在未加特别说明的情况下,大多认为是…  相似文献   

19.
霍耳元件是直接利用霍耳效应制成的器件,具有尺寸小、外围电路简单、频响宽、动态特性好、使用寿命长等特点,因此广泛应用于测量、自动控制及信息处理等领域、本文利用物理学理论.分析、介绍霍耳效应原理、霍耳元件及其典型应用,使物理学理论与技术有机结合. 一、霍耳效应 将静止的载流导体(多为半导体)置入磁场中,当导体的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势(电压),这种现象称霍耳效应. 为便于阐述,用UH表示霍耳电压,n表示(半)导体的载流子(电子、空穴)密度,q表…  相似文献   

20.
洛伦兹力有两种定义:一种是运动电荷在电磁场中受的电场力与磁场力的矢量和,一种是运动电荷在磁场中受的力;一般所说的洛伦兹力为后一种,本文所指也为后一种.对于该洛伦兹力,众所周知,因其始终与运动电荷速度方向垂直而对运动电荷永不做功.关于论证洛伦兹力是否做功的文章有很多;这些文章都以对洛伦兹力永不做功表示怀疑为起点,最终以洛伦兹力永不做功为结论.然而,笔者思考该类问题时,在自构的情景中遇到了困惑,现阐述如下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号