首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamics of a ball moving in gravitational field and colliding with a moving table is studied in this paper. The motion of the limiter is assumed as periodic with piecewise constant velocity-it is assumed that the table moves up with a constant velocity and then moves down with another constant velocity.The Poincaré map,describing evolution from an impact to the next impact,is derived and scenarios of transition to chaotic dynamics are investigated analytically and numerically.  相似文献   

2.
The to and fro motion of a bouncing ball on a flat surface is represented by a low-dimensional model. To describe the repeated reversals of the horizontal velocity of the ball, the elasticity of the ball has to be taken into account. We show that a simple fly-wheel model exhibits the observed hither and thither motion of elastic balls. The suggested model is capable of describing oblique impacts of spherical bodies, which can be important in many applications, including dynamical simulation of granular materials. We find that the behaviour of the bouncing fly-wheel is sensitive to the initial conditions, and the escape time plots are used to illustrate this observation.  相似文献   

3.
4.
Stability and dynamic characteristics of a ball bearing-rotor system are investigated under the effect of the clearance in the ball bearing. Different clearance values are assumed to calculate the nonlinear stability of periodic solution with the aid of the Floquet theory. Bifurcation and chaos behavior are analyzed with variation of the clearance and rotational speed. It is found that there are three routes to unstable periodic solution. The period-doubling bifurcation and the secondary Hopf bifurcation are two usual routes to instability. The third route is the boundary crisis, a chaotic attractor occurs suddenly as the speed passes through its critical value. At last, the instable ranges for different internal clearance values are described. It is useful to investigate the stability property of ball bearing rotor system.  相似文献   

5.
The motion of a particle on a screen is directly affected by the motion of the screen if airflow and intergranular friction are ignored. To study this effect, a mathematical model was established to analyze the motion of a planar reciprocating vibrating screen, and a matrix method was employed to derive its equation of motion. The motion of the screen was simulated numerically and analyzed using MATLAB. The results show that the screen undergoes non-simple harmonic motion and the law of motion of each point in the screen is different. The tilt angle of the screen during screening is not constant but varies according to a specific periodic function. The results of numerical simulations were verified through experiments. A high-speed camera was used to track the motion of three points in the longitudinal direction of the screen. The balance equation for forces acting on a single particle on the screen was derived based on the non-simple harmonic motion of the screen. These forces were simulated using MATLAB. Different types of particle motion like slipping forward, moving backward, and being tossed to different parts of the screen were analyzed. A vibro-impact motion model for a particle on the non-simple harmonic vibrating screen was established based on the nonlinear law of motion of the particle. The stability of fixed points of the map is discussed. Regimes of different particle behaviors such as stable periodic motion, period-doubling bifurcation motion, Hopf bifurcation motion, and chaotic motion were obtained. With the actual law of motion of the screen and the behavior of a particle on the screen, a theoretical basis for design optimization of the screen is provided.  相似文献   

6.
The mechanisms whereby a double pendulum with vibrating point of suspension loses stability in equilibrium positions are studied. Stability conditions for the equilibrium positions in critical cases are established __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 120–133, July 2008.  相似文献   

7.
In this paper the philosophy of mathematical phenomenological mapping has been applied to the non-linear dynamics of spur gears and radial ball bearings. The spur gear pair dynamics and rolling element bearing dynamics are analyzed separately, but with a tendency to reduce the both of the systems to the same mathematical model. The different reasonable assumptions are taken in every of these analyzes, but they do not have significant influence to the accuracy of the results. The systems are reduced to the single degree of freedom dynamics model. The total gear stiffness and ball bearing stiffness are recognized as the main influent factor of vibration behavior of these machine elements. Therefore, the special attention was paid to the new approach and procedure for stiffness solving and related problems. A single spur gear pair dynamics is solved and the results for total gear stiffness and vibration are shown. The conclusions emphasize the importance of described parallel analyzes in order to reduce the calculation time in solving different phenomena with usage of the principle of mathematical phenomenology.  相似文献   

8.
The response of turbulent flow to the disturbance of a vibrating ribbon   总被引:1,自引:0,他引:1  
By use of the LDV, experimental investigation was carried out for a turbulent boundary layer which was disturbed with an electric-magnetic vibrating ribbon. It is found that, in the flow, the response of the disturbance contains harmonic components besides the fundamental frequency of the ribbon vibration. The fundamental and harmonic disturbances can also enhance the energy of other frequency components around them. In the experiments, the regular disturbane was introduced in the outer region of the boundary layer. Under the given flow conditions, they can significantly influence the downstream coherent structures in the wall region by suppressing the bursts and increasing their period. The effect on the burst period depends on the disturbing frequency. The project supported by the National Natural Science Foundation of China  相似文献   

9.
碰摩裂纹转子轴承系统的周期运动稳定性及实验研究   总被引:1,自引:0,他引:1  
根据碰摩裂纹耦合故障转子轴承系统的非线性动力学方程,利用求解非线性非自治系统周期解的延拓打靶法,研究了系统周期运动的稳定性。研究发现,小偏心量下系统周期运动发生Hopf分岔,大偏心量下系统周期运动发生倍周期分岔,偏心量的加大使周期解的稳定性明显降低;系统碰摩间隙变小,碰摩影响了油膜涡动的形成,使失稳转速有所提高;裂纹深度的加大降低了系统周期运动的稳定性。本文的研究为转子轴承系统的安全稳定运行提供了理论参考。  相似文献   

10.
This paper studies interactions of pipe and fluid and deals with bifurcations of a cantilevered pipe conveying a steady fluid, clamped at one end and having a nozzle subjected to nonlinear constraints at the free end. Either the nozzle parameter or the flow velocity is taken as a variable parameter. The discrete equations of the system are obtained by the Ritz-Galerkin method. The static stability is studied by the Routh criteria. The method of averaging is employed to examine the analytical results and the chaotic motions. Three critical values are given. The first one makes the system lose the static stability by pitchfork bifurcation. The second one makes the system lose the dynamical stability by Hopf bifurcation. The third one makes the periodic motions of the system lose the stability by doubling-period bifurcation. The project supported by the Science Foundation of Tongji University and Tongji University and National Key Projects of China under Grant No. PD9521907.  相似文献   

11.
冲击消振器的概周期碰振运动分析   总被引:5,自引:0,他引:5  
建立了冲击消振器对称周期运动的Poincar啨映射方程 ,讨论了对称周期运动的稳定性与局部分岔。通过数值仿真研究了冲击消振器在非共振、弱共振和强共振条件下的概周期碰振运动及其向混沌的转迁过程。  相似文献   

12.
The stability and bifurcation of the trivial solution in the two-dimensional differential equation of a model describing human respiratory system with time delay were investigated. Formulas about the stability of bifurcating periodic solution and the directionof Hopf bifurcation were exhibited by applying the normal form theory and the center manifold theorem.Furthermore, numerical simulation was carried out.  相似文献   

13.
对挤压油膜阻尼器-滑动轴承-转子系统的稳定性及分岔行为进行了研究,由于该动力系统为一强非线性系统,具有复杂的非线性现象。本文采用Floquet理论对其周期解的稳定性进行了计算分析:随着系统参数的变化,该系统将出现稳态周期解、准周期分岔、倍周期分岔。文中也对系统平衡点的稳定性进行了分析,讨论了其Hopf分岔行为  相似文献   

14.
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.  相似文献   

15.
王平  张雄  王知人 《力学季刊》2016,37(3):493-501
本文根据大挠度板壳力学基础理论和电磁弹性力学理论,建立了载流圆板的非线性磁弹性随机振动力学模型,采用伽辽金变分法将其变换成非线性常微分动力学方程.通过拟不可积哈密顿系统的平均理论将该方程等价为一个一维伊藤随机微分方程.通过计算该方程的最大Lyapunov 指数判断该系统的局部随机稳定性,并进一步采用基于随机扩散过程的奇异边界理论判断该系统的全局稳定性.最后通过讨论该系统的稳态概率密度函数图的形状变化讨论了该动力系统的随机Hopf分岔的变化规律,并采用数值模拟对理论分析进行了验证.  相似文献   

16.
A closed-form system of dynamic equations describing the free motion of a material system with variable mass–inertia characteristics is derived. The system consists of a carrying body and carried bodies (freight) and undergoes translational–rotational motion in space. The differential equations of motion derived include time-dependent parameters and allow for the inertia and varying mass of the system, etc. It is pointed out that special cases can be derived from the general equations to study various modes of motion and stability phenomena  相似文献   

17.
In this paper, a modified Jeffcott model is proposed and studied in order to shed light into the dynamics of a complex system, the Short Electrodynamic Tether (SET), which is similar to an unbalanced rotor. Due to the internal damping, a geometrically linear SET model appears to be unstable as predicted by the linear rotordynamics theory. Some studies in the field of rotordynamics suggest that this instability caused by internal damping do not appear if geometric nonlinearities are taken into account in the system equations of motion. Stability and bifurcation analysis have been carried out on the modified Jeffcott model, which accounts for geometric nonlinearities, orthotropy in the shaft's cross section, and a viscous damping-based internal damping model. The stability results analytically obtained have been compared with a nonlinear multibody model by means of time simulations and good agreement has been found.  相似文献   

18.
The dynamic propagation of a bifurcated crack under arbitrary loading is studied. Under plane loading configurations, it is shown that the model problem of the determination of the dynamic stress intensity factors after branching is similar to the anti-plane crack branching problem. By analogy with the exact results of the mode III case, the energy release rate immediately after branching under plane situations is expected to be maximized when the branches start to propagate quasi-statically. Therefore, the branching of a single propagating crack under mode I loading should be energetically possible when its speed exceeds a threshold value. The critical velocity for branching of the initial single crack depends only weakly on the criterion applied for selecting the paths followed by the branches. However, the principle of local symmetry imposes a branching angle which is larger than the one given by the maximum energy release rate criterion. Finally, it is shown that an increasing fracture energy with the velocity results in a decrease in the critical velocity at which branching is energetically possible.  相似文献   

19.
Jiang  Jun  Ulbrich  Heinz 《Nonlinear dynamics》2001,24(3):269-283
An analytical study is carried out on the stability of the fullannular rub solutions of an externally excited, modified Jeffcott rotorwith a given rotor/stator clearance and cross-coupling influences. Theobtained analytical stability conditions provide an opportunity for abetter understanding of the dynamical phenomena of rotor/stator systemswith rubs, such as jump phenomena and the transition between periodicand quasi-periodic full rub responses as well as between the fullannular rubs and the partial rubs. A systematic study on the influenceof the system parameters on these phenomena is carried out. It is foundthat the simultaneous presence of the coefficient of friction and thecross-coupling stiffness coefficient with a proper value may benefit thedynamics of the rotor/stator system with rubs.  相似文献   

20.
IntroductionIn 1 958,GentandLindleyobservedthephenomenonofsuddenvoidnucleationinsolidsexperimentallyintensioningahomogenousclose_grainedvulcanizedrubbercylinderforthefirsttime.ButthemathematicalmodelonvoidnucleationandgrowthhasnotbeendescribedasabifurcationproblembasedonthetheoryofnonlinearelasticmechanicsbyBall[1]until1 982 .Inrecentyears,manyinvestigationshavebeenmadeonthisaspect.Theproblemofcavitatedbifurcationforincompressibleisotropichyperelasticmaterialswithpower_lawtypehasbeeninvestig…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号