首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
New alkynyl complexes [Pt2M4{CC(3-OMe)C6H4}8] (M = Ag 1, Cu 2) have been synthesized and their structures and properties compared to those of related [Pt2M4(CCPh)8] compounds. For the Pt-Ag derivatives, the X-ray structures of the discrete yellow solvate monomer, [Pt2Ag4{CC(3-OMe)C6H4}8].2THF ([1.2THF]), and the dark garnet unsolvated polymeric form, [Pt2Ag4{CC(3-OMe)C6H4}8](infinity) ([1](infinity)), are presented. The yellow form ([1.2THF]) exhibits a distorted octahedral geometry of the metal centers with the platinum atoms mutually trans and the four silver atoms in the equatorial plane. Pairs of Ag atoms are weakly bridged by THF molecules [mu-Ag2...O(THF)]. The garnet form ([1](infinity)) has an unprecedented infinite stacked chain of octahedral clusters linked by short Pt...Pt bonds (3.1458(8) A). In both forms, different types of weak C-H...O (OMe) hydrogen bonds are observed. For comparative purposes, we have also provided the crystal structures of the yellow monomer form, [Pt2Ag4-(CCPh)8].CHCl3, and the red dimer form, [Pt2Ag4(CCPh)8]2 (Pt-Pt 3.221(2) A). These clusters display intense photoluminescence in both solution and the solid state, at room temperature and 77 K. The emission observed for the yellow form [1.2THF] in the solid state is assigned to a 3MLM'CT [Pt(d)/pi(CCR) --> Pt(p(z))/Ag(sp)/pi(CCR)] state modified by Pt...Ag, Ag...Ag, and Ag...(THF) contacts. However, in the garnet form [1](infinity) and in 2, the emissions are related to the axial Pt-Pt bonds and are assigned as phosphorescence from a metal-metal-to-ligand charge-transfer (3MMLCT) excited state ([1](infinity)), or an admixture of a metal-metal (Pt-Pt) centered 3(dsigmap(z)sigma) and 3MMLCT excited state (2). For 1, a remarkable quenching and a shift to higher energies in the emission is observed on changing from CH2Cl2 to THF, and for both 1 and 2, the emission spectra at 77 K varies with the concentration, showing their tendency to stack even in glass.  相似文献   

2.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

3.
Chen YD  Zhang LY  Shi LX  Chen ZN 《Inorganic chemistry》2004,43(23):7493-7501
Reaction of Pt(diimine)(edt) (edt = 1,2-ethanedithiolate) with M(2)(dppm)(2)(MeCN)(2)(2+) (dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(edt)(mu-SH)(dppm)(3)](ClO(4)) (11) and [PtCu(2)(diimine)(2)(edt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy), 12; 4,4'-dibutyl-2,2'-bipyridine (dbbpy), 13; phenanthroline (phen), 14; 5-bromophenanthroline (brphen), 15) when M = Cu(I). The reaction, however, afforded tetra- and trinuclear complexes [Pt(2)Ag(2)(edt)(2)(dppm)(2)](SbF(6))(2) (17) and [PtAu(2)(edt)(dppm)(2)](SbF(6))(2) (21) when M = Ag(I) and Au(I), respectively. The complexes were characterized by elemental analyses, electrospray mass spectroscopy, (1)H and (31)P NMR, IR, and UV-vis spectrometry, and X-ray crystallography for 14, 17, and 18. The Pt(II)Cu(I)(2) heterotrinuclear complexes 11-15 exhibit photoluminescence in the solid states at 298 K and in the frozen acetonitrile glasses at 77 K. It is likely that the emission originates from a ligand-to-metal charge transfer (dithiolate-to-Pt) (3)[p(S) --> d(Pt)] transition for 11 and from an admixture of (3)[d(Cu)/p(S)-pi(diimine)] transitions for 12-16. The Pt(II)(2)Ag(I)(2) heterotetranuclear complexes 17 and 18 are nonemissive in the solid states and in solutions at 298 K but show photoluminescence at 77 K. The Pt(II)Au(I)(2) heterotrinuclear complexes 19-21, however, are luminescent at room temperature in the solid state and in solution. Compounds 19 and 20 afford negative solvatochromism associated with a charge transfer from an orbital of a mixed metal/dithiolate character to a diimine pi orbital.  相似文献   

4.
lp;&-5q;1 The reactions of [Tl2[S2C=C[C(O)Me]2]]n with [MCl2L2] (1:1) or with [MCl2(NCPh)2] and PPh3 (1:1:2) give complexes [M[eta2-S2C=C[C(O)Me]2]L2] [M = Pt, L2 = 1,5-cyclooctadiene (cod) (1); L2 = bpy, M = Pd (2a), Pt (2b), L = PPh3, M = Pd (3a), Pt (3b)] whereas with MCl2 and QCl (2:1:2) anionic derivatives Q2[M[eta2-S2C=C[C(O)Me]2]2] [M = Pd, Q = NMe4 (4a), Ph3P=N=PPh3 (PPN) (4a'), M = Pt, Q = NMe4 (4b)] are produced. Complexes 1 and 3 react with AgClO4 (1:1) to give tetranuclear complexes [[ML2]2Ag2[mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2]](ClO4)2 [L = PPh3, M = Pd (5a), Pt (5b), L2 = cod, M = Pt (5b')], while the reactions of 3 with AgClO4 and PPh3 (1:1:2) give dinuclear [[M(PPh3)2][Ag(PPh3)2][mu2,eta2-(S,S')-S2C=C[C(O)Me]2]]]ClO4 [M = Pd (6a), Pt (6b)]. The crystal structures of 3a, 3b, 4a, and two crystal forms of 5b have been determined. The two crystal forms of 5b display two [Pt(PPh3)2][mu2,eta2-(S,S')-[S2C=C[C(O)Me]2]2] moieties bridging two Ag(I) centers.  相似文献   

5.
To verify whether attractive metallophilic interactions exist in the dimer-of-dimers [Cu(2)(ophen)(2)](2) (Hophen=1H-[1,10]phenanthrolin-2-one) (1), we designed and synthesized a series of such [M(2)L(2)](2) structures by varying the d(10) metal and/or the ligand (M=Cu(I) or Ag(I), L=ophen or obpy; Hobpy=1H-[2,2']bipyridinyl-6-one), and have successfully obtained three dimers-of-dimers: [Ag(2)(ophen)(2)](2).6 H(2)O (2), [Cu(2)(obpy)(2)](2) (3), and [Ag(2)(obpy)(2)](2).4.5 H(2)O.0.5 DMF (4). X-ray analyses of these structures show that interdimer M-M separations in [Ag(2)-(ophen)(2)](2) (3.199 A) are remarkably shorter than those in [Cu(2)(ophen)(2)](2) (3.595 A). Shorter interdimer M-M separations are found in the structures of [M(2)(obpy)(2)](2) (2.986 and 2.993 A in [Cu(2)(obpy)(2)](2), 3.037 to 3.093 A in [Ag(2)(obpy)(2)](2)), in which the pi systems are smaller than in the complexes with the ophen ligand. Detailed structural comparison of these dimers-of-dimers indicates that the interdimer, face-to-face pi-pi interactions repulse rather than support the interdimer metal-metal attractive interactions. This study also yields qualitative comparison of the strengths between argentophilic, cuprophilic, and face-to-face pi-pi interactions. DFT calculations on the four dimers-of-dimers further support the above deduction. The structure of a trimer-of-dimers [Ag(2)(obpy)(2)](3) (Ag-Ag 3.171 to 3.274 A) is further evidence that the oligomerization of the [M(2)L(2)] molecules is favored by stronger metallophilic and weaker face-to-face pi-pi interactions.  相似文献   

6.
This work describes the synthesis of cis-[Pt(C[triple bond]CPh)2(Hdmpz)2] (1) and its use as a precursor for the preparation of homo- and heteropolynuclear complexes. Double deprotonation of compound 1 with readily available M(I) (M = Cu, Ag, Au) or M(II) (M = Pd, Pt) species affords the discrete hexanuclear clusters [{PtM2(mu-C[triple bond]CPh)2(mu-dmpz)(2)}(2)] [M = Cu (2), Ag (3), Au (4)], in which both "Pt(C[triple bond]CPh)2(dmpz)(2)" fragments are connected by four d(10) metal centers, and are stabilized by alkynyl and dimethylpyrazolate bridging ligands, or the trinuclear complexes [Pt(mu-C[triple bond]CPh)2(mu-dmpz)(2){M(C/\P)}2] (M = Pd (5), Pt (6); C/\P = CH(2)-C(6)H(4)-P(o-tolyl)2-kappaC,P), respectively. The X-ray structures of complexes 1-4 and 6 are reported. The X-ray structure of the platinum-copper derivative 2 shows that all copper centers exhibit similar local geometry being linearly coordinated to a nitrogen atom and eta(2) to one alkynyl fragment. However in the related platinum-silver (3) and platinum-gold (4) derivatives the silver and gold atoms present three different coordination environments. The complexes have been studied by absorption and emission spectroscopy. The hexanuclear complexes exhibit bright luminescence in the solid state and in fluid solution (except 4 in the solid state at 298 K). Dual long-lived emission is observed, being clearly resolved in low-temperature rigid media. The low-energy emission is ascribed to MLM'CT Pt(d)/pi(C[triple bond]CPh)-->Pt(p(z))/M'(sp)/pi*(C[triple bond]CPh) modified by metal-metal interactions whereas the high-energy emission is tentatively attributed to an emissive state derived from dimethylpyrazolate-to-metal (d(10)) LM'CT transitions pi(dmpz)-->M'(d(10)).  相似文献   

7.
The weak metal-metal interactions of Pt(II)-Ag(I)/Cu(I) have been investigated by ab initio method at MP2 level through the model complexes [trans-Pt(PH3)2(CN)2-M(PH3)2+] (M=Ag,Cu). The calculated interaction energy of 12.9 and 11.5 kcal mol(-1) for [trans-Pt(PH3)2(CN)2-Ag(PH3)2+] and [trans-Pt(PH3)2(CN)2-Cu(PH3)2+] respectively, are in the middle of the van der Waals force and the strong hydrogen bond. The estimated equilibrium separations between Pt and M, r(eq)(Pt-M) (3.32 A for M=Ag and 3.23 A for M=Cu), lie within the region expected for weak metal-metal interaction. The electronic dispersive contributions dominate the weak interaction.  相似文献   

8.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

9.
应用TD.DFT(time-dependent density functional theory)并PCMfpolarizable continuum model)模型研究了一类自组装的[Pt2M4(C'≡CH)8](M=Cu,Ag)簇合物的电子结构和光谱性质.应用DFT(density functional theory)方法优化了该簇合物的基态及激发态结构.综合计算结果,得到与试验结果相一致的结构与光谱特点.[Pt2Ag4(C≡CH)8]具有呈D4和D4h对称性的两个稳定的基态几何结构.Pt-M距离预示弱相互作用的存在.Cu—Cu距离大于俩个Cu原子的范德华半径和而Ag-Ag间距与俩个Ag原子的范德华半径和差别不大.激发过程使得Pt…M,Ag…Ag作用增强,虽然Cu…Cu距离也相应缩短,但是其仍大于范德华半径之和.[Pt2Cu4(C≡CH)8]、[Pt2Ag4(C≡CH)8](A)和(B)的最低能吸收在450、365和375nm处,发射在611、431和435nm处.红外可见谱范围内,[Pt2M4(C≡CH)8]的吸收波带都有Cu或Ag成分的贡献,所以没有ILCT或MPtLCT跃迁特征出现(ILCT:intraligand charge transfer;MLCT:metal-to—ligand charge transfer).由于最低能吸收和发射具有不同的跃迁特征,所以发射不是来自于最低能吸收.[Pt2Ag4(C≡CH)8]簇合物的MM相互作用在激发态增强,发射光谱具有显著的ILCT特点,这也是[Pt2Ag4(C≡CH)8]的发射波长相对于其对应的同配体前躯体[Pt(C≡CH)4]^2-有少许蓝移的原因.  相似文献   

10.
The reaction of cis-[Pt(NH3)2(3-pyhaH)2]2+ (3-pyhaH = 3-pyridinehydroxamic acid) and cis-[Pt(NH3)2(4-pyhaH)2]2+ (4-pyhaH = 4-pyridinehydroxamic acid) with Cu(II), Ni(II) or Zn(II) in aqueous solution affords novel heterobimetallic pyridinehydroxamate-bridged complexes, {cis-[Pt(NH3)2(mu-3-pyha)M(mu-3-pyha)].SO4.xH2O}n and {cis-[Pt(NH3)2(mu-4-pyha)M(mu-4-pyha)].SO4.xH2O}n respectively. The crystal and molecular structure of one of these, {cis-[Pt(NH3)2(mu-3-pyha)Cu(mu-3-pyha)]SO4.8H2O}n 3a, has been determined and was found to be a novel heterobimetallic wave-like coordination polymer, the structure of which contains interlinked pyridinehydroxamate-bridged repeating units of Pt(II) and Cu(II) ions in slightly distorted square-planar N4 and O4 coordination environments respectively and extensive hydrogen-bonding through the Pt ammines and the deprotonated hydroxamate O and via the O of the SO4(2-) counterions and the H(N) of the hydroxamate moiety. Spectrophotometric and speciation studies on the other heterobimetallic systems confirm that very similar species are being formed in solution and based on elemental analysis and spectroscopic results analogous complexes are formed in the solid-state. In this paper, we report the first examples of coordination polymers incorporating both Pt(II)/Cu(II), Pt(II)/Ni(II) and Pt(II)/Zn(II) and containing pyridinehydroxamic acids as bridging scaffolds.  相似文献   

11.
Chen YD  Zhang LY  Qin YH  Chen ZN 《Inorganic chemistry》2005,44(18):6456-6462
Polynuclear heterovalent Au(III)-M(I) (M = Cu, Ag, Au) cluster complexes [Au(III)Cu(I)8(mu-dppm)3(tdt)5]+ (1), [Au(III)3Ag(I)8(mu-dppm)4(tdt)8]+ (2), and [Au(III)Au(I)4(mu-dppm)4(tdt)2]3+ (3) were prepared by reaction of [Au(III)(tdt)2]- (tdt = toluene-3,4-dithiolate) with 2 equiv of [M(I)2(dppm)2]2+ (dppm = bis(diphenylphosphino)methane). Complex 3 originates from incorporation of one [Au(III)(tdt)2]- with two [Au(I)2(dppm)2]2+ components through Au(III)-S-Au(I) linkages. Formation of complexes 1 and 2, however, involves rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms. The Au(tdt)2 component connects to four M(I) atoms through Au(III)-S-M(I) linkages in syn and anti conformations in complexes 1 (M = Cu) and 3 (M = Au), respectively, but in both syn and anti conformations in complex 2 (M = Ag). The tdt ligand exhibits five types of bonding modes in complexes 1-3, chelating Au(III) or M(I) atoms as well as bridging Au(III)-M(I) or M(I)-M(I) atoms in different orientations. Although complexes 1 and 2 are nonemissive, Au(III)Au(I)(4) complex 3 shows room-temperature luminescence with emission maximum at 555 nm (tau(em) = 3.1 micros) in the solid state and at 570 nm (tau(em) = 1.5 micros) in acetonitrile solution.  相似文献   

12.
A series of crystalline salts based on the [M(dto)2]2- (dto = 1,2-dithiooxalate, M = Ni, Pt, Cu) dianion with hydrogen-bond donor cations have been synthesised following a molecular tectonics approach. The chelating M(dto)[dot dot dot]HN supramolecular synthon has been exploited in a systematic study of its robustness. The effects of competition between hydrogen-bond acceptors, of the shape and functionality of the cations and of varying the metal in the anion are discussed. The preparation and structural characterisation of the new crystalline phases [4,4'-H(2)bipy][Pt(dto)2] (2), [HNC5H4CO2H-4]2[Pt(dto)2] (5), [HNC5H4CO2H-3]2[Pt(dto)2] (6), [HNC5H4CH2CO2H-4]2[Ni(dto)2] (7), [HNC(5)H(4)CH(2)CO(2)H-3]2[Ni(dto)2] (8), [HNC5H4CONH2-4]2[Ni(dto)2] (9), [HNC5H4CHNOH-4]2[Ni(dto)2] (10), [HNC5H4CHNOH-3]2[Ni(dto)2] (11), [4,4'-H2bipip][Ni(dto)2] (12), [H2NC5H9CO2H-4]2[Pt(dto)2] (12), [H2NC5H9CO2H-4]2[Cu(dto)2] (14), [H2NC5H9CO2H-3]2[Ni(dto)2][H2O]2 (15), [H2NC5H9CO2H-3]2[Pt(dto)2][H2O]2 (16), [H2NC5H9CO2H-3]2[Cu(dto)2][H2O]2 (17), [H(Me)NC5H9CO2H-4]2[Ni(dto)2][H2O]2 (18) is reported. The charge-assisted NH[dot dot dot]dto synthon is formed in each of compounds 1-20, and is apparently much more robust than the conventional synthons used (such as the carboxylic acid dimer), which have a much lower rate of occurrence. The NH[dot dot dot]dto synthon may be generalised to 3- and 4-pyridinium species and 3- and 4-piperidinium derivatives. In the latter cases branching of the hydrogen-bond networks through the NH2 groups arises. The robustness of the NH...dto synthon allows structures of the form [NH cation]2[M(dto)2] to be regarded as being formed by the packing of neutral supermolecules. Cases of isomorphism (as in 16-18) and latent polymorphism (e.g. in 4 and 6) are noted.  相似文献   

13.
The study of the reactivity of [Pt2M4(CCR)8] (M=Ag or cu; R=Ph or tBu) towards different neutral and anionic ligands is reported. This study reveals that reactions of the phenylacetylide derivatives [Pt2M4(CCPh)8] with anionic, X (X=Cl or Br) or neutral donors (CNtBu or py) in a molar ratio 1:4 (m/donor ratio 1:1) yield the trinuclear anionic (NBu4)2[{Pt(CCPh)4 (MX)2] (M=Ag or Cu, X =Cl or Br) or neutral [{Pt(CCPh04=sAGL)2] (L=CNtBu or py) complexes, respectively. The crystal structure of (NBu4)2[{Pt(CCPh)4}(CuBr)2](4) shows that the anion is formed by a dianionic Pt(CCPh)4 fragment and two neutral CuBr units joined through bridging alkynyl ligands. All the alkynyl groups are σ bonded to Pt and η2-coordinated to a Cu atom which have an approximately trigonal-planar geometry. By contrast, similar reactions with [Pt2M4(CCtBu)8] (molar ratio M/donor 1:1) afford hexanuclear dianionic (NBu4)2[Pt2M4(CCtBu)8X2] or neutral [Pt2Ag4(CCtBu08Py2]. Only by treatment with a large exces of Br (molar ratio M/Br 1:2) are the trinuclear complexes (NBu4)2[{Pt(CCtBu4 (MBr)2] (M=Ag, Cu) obtained. Attempted preparations of analogous complexes with phosphines (L′=PPh3 or PEt3) by reactions of [Pt2M4(CCR8] with L′ leads to displacement of alkynyl ligands from platinum and formation of neutral mononuclear complexes [trans-Pt(CCR)2L′2].  相似文献   

14.
A new strategy to synthesize organometallic oligomers is presented and consists of using the title diisocyanide and chelated metal fragments with bis(diphenylphosphine)alkanes. The title materials are synthesized by reacting the [M(dppe)(BF4)] and [M2(dppp)2](BF4)2 complexes (M = Cu, Ag; dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane) with dmb and the Pd2-bonded d9-d9 Pd2(dmb)2Cl2 dimer with dppe or dppp. The model compounds [M(diphos)(CN-t-Bu)2]BF4 (M = Cu, Ag) and [Pd2(diphos)2(CN-t-Bu)2](ClO4)2 (diphos = dppe, dppp) have been prepared and characterized as well for comparison purposes. Three of the model compounds were also characterized by X-ray crystallography to establish the diphosphine chelating behavior. The materials are amorphous and have been characterized from the measurements of the intrinsic viscosity, DSC, TGA, and XRD, as well as their capacity for making stand-alone films. The intrinsic viscosity data indicate that the Cu and Pd2 materials are oligomeric in solution (approximately 8-9 units), while the Ag materials are smaller. For [[Cu(dppe)(dmb)]BF4]n, a glass transition is reproducibly observed at about 82 degrees C (DeltaCp = 0.43 J/(g deg)), which suggests that these materials are polymeric in the solid state. The Cu and Ag species are luminescent in the solid state at room temperature exhibiting lambda(max) and tau(e) (emission lifetime) around 480-550 nm and 18-48 micros, respectively, while the Pd2 species are not luminescent under these conditions. During the course of this study, the unsaturated [M2(dppp)2](BF4)2 starting materials (M = Cu, Ag) were prepared, one of which (M = Ag) was characterized by crystallography. The bridging behavior of the dppp ligand in this case contrasts with the chelating behavior seen for the saturated [Cu(dppp)(CN-t-Bu)2]BF4 complex.  相似文献   

15.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

16.
Reaction of complex [Cp2Mo2(CO)4(micro,eta 2-P2)] (Cp=C5H5 (1)) with CuPF6, AgX (X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4) and [(Ph3P)Au(THF)][PF6] (THF=tetrahydrofuran), respectively, results in the facile formation of the dimers 3 b-h of the general formula [M2({Cp2Mo2 (CO)4(micro,eta 2:eta 2-P2)}2)({Cp2Mo2(CO)4 (micro,eta 2:eta 1:eta 1-P2)}2)][X]2 (M=Cu, Ag, Au; X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4). As revealed by X-ray crystallography, all these dimers comprise dicationic moieties that are well-separated from the weakly coordinating anions in the solid state. If 1 is allowed to react with AgNO2 and LAuCl (L=CO or tetrahydrothiophene), respectively, the dimer [Ag2{Cp2Mo2 (CO)4(micro,eta 2:eta 1:eta 1-P2)}2(eta 2-NO2)2] (5) and the complex [AuCl{Cp2Mo2(CO)4(micro,eta 2:eta 1-P2)}] (6) are formed, which have also been characterised by X-ray crystallography. In compounds 5 and 6, the anions remain coordinated to the Group 11 metal centres. Spectroscopic data suggest that the dimers 3 b-h display dynamic behaviour in solution and this is discussed by using the comprehensive results obtained for 3 g (M=Ag; X=Al{OC(CF3)3}4) as a basis. The interpretation of the experimental results is facilitated by density functional theory (DFT) calculations on 3 g (structures, energetics, NMR shielding tensors). The 31P magic angle spinning (MAS) NMR spectra recorded for the dimers 3 b (M=Cu; X=PF6) and 3c (M=Ag; X=BF4) as well as that of the previously reported one-dimensional (1 D) polymer [Ag2{Cp2Mo2(CO)4(micro,eta 2:eta 1:eta 1-P2)}3(micro,eta 1:eta 1-NO3)]n[NO3]n (4) are also discussed herein and the strong dependence of the chemical shift of the phosphorus atoms within each compound on subtle structural differences in the solid state is demonstrated. Furthermore, the X-ray crystallographic and 31P MAS NMR spectroscopic characterisation of a new polymorph of 1 is reported.  相似文献   

17.
A series of mononuclear cyclometalated benzo[h]quinolinate platinum and palladium(II) complexes with phosphine ligands, namely, [M(bzq)ClL] (L=PPh2H, Pt 1, Pd 2; PPh2CCPh, Pt 3, Pd 4), [Pt(bzq)(PPh2H)(PPh2CCPh)]ClO4 5, [Pt(bzq)(PPh2C(Ph)=C(H)PPh2)]ClO4 6, and [Pt(bzq)(CCPh)(PPh2CCPh)] (7a, 7b), were synthesized. The X-ray crystal structures of 1, 6.CH3COCH3.1/2CH3(CH2)4CH3, and 7b.CH3COCH3 have been determined. In 1, the metalated carbon atom and the P atom are mutually cis, whereas in 7b they are trans located. For complex 6, C and N are crystallographically indistinguishable. Reaction of [Pt(bzq)(mu-Cl)]2 with PPh2H and excess of NEt3 leads to the phosphide-bridge platinum dimer [Pt(bzq)(mu-PPh2)]2 8 (X-ray). Moderate pi-pi intermolecular interactions and no evident Pt-Pt interactions are found in 1, 7b, and in 8. All of the complexes exhibit absorption bands at high energy due to the intraligand transitions (1IL pi --> pi) and absorptions at lower energy which are attributed to MLCT (5d) pi --> pi (CLambdaN) transition. Platinum complexes show strong luminescence in both solid state and frozen solutions. The influence of the coligands on the photophysics of the platinum complexes has been examined by absorption and emission spectroscopy.  相似文献   

18.
Novel electroactive multimetallic compounds based on the [Pt(2)(mu(2)-S)(2)M] core, viz. [Pt(2)(PPh(3))(4)(mu(3)-S)(2)HgFc]PF(6) (1) [Fc = (eta(5)-C(5)H(4))Fe(eta(5)-C(5)H(5))] and [Pt(2)(PPh(3))(4)(mu(3)-S)(2)Hg(2)Fc'](PF(6))(2) (2) [Fc' = Fe(eta(5)-C(5)H(4))(2)], have been synthesized under the guide of electrospray mass spectrometry. The electrochemistry of these ferrocene funtionalized compounds together with the reported [Pt(2)(PPh(3))(4)(mu(3)-S)(2)HgPPh(3)](PF(6))(2) (3), [Pt(2)(PPh(3))(4)(mu(2)-S)(mu(3)-S)HgPh]PF(6) (4), and [Pt(2)(PPh(3))(4)(mu(2)-S)(mu(3)-S)AuPPh(3)]PF(6) (5) have been investigated using cyclic voltammetry and DFT calculations. These results point to a prominent ligand-based oxidation.  相似文献   

19.
Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site. Prior to DFT optimization, small distortions in selected Ce-O distances were imposed to explore the energetics associated with reduction of Ce(4+) to Ce(3+) due to charge transfer to Ce during M adsorption. Charge redistribution is confirmed with spin density isosurfaces and site projected density of states. We demonstrate that Cu and Au atoms can be oxidized to Cu(2+) and Au(2+), although the adsorption energy, E(ads), of Au(2+) is less favorable and, unlike Cu(2+), it has not been experimentally observed. Oxidation of Ag always results in Ag(+). For M adsorption at an O bridge site, E(ads)(2NN) > E(ads)(3NN) > E(ads)(1NN) where NN denotes the nearest neighbor Ce(3+) site relative to M. Alternatively, for M adsorption at a Ce bridge site, E(ads)(3NN) > E(ads)(2NN) > E(ads)(1NN). The adsorption behavior of M on CeO(2) (110) is compared with M adsorption on CeO(2)(111).  相似文献   

20.
DFT and MP2 to MP4(SDQ) methods were applied to M(PH3)2(C60), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12) (M = Pd or Pt, C20H10 = corannulene, and C21H12 = sumanene). The binding energy considerably fluctuates around MP2 and MP3 levels but much less upon going from MP3 to MP4(SDQ) in Pt(PH3)2(C2H4), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12). Also, the MP4(SDQ) method presents a binding energy similar to that of the CCSD(T) method in Pt(PH3)2(C2H4). Thus, it is likely that the MP4(SDQ) method is useful to evaluate binding energies of these complexes. The binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are evaluated to be 24.9 and 26.1 kcal/mol, respectively, by the MP4(SDQ) method and only +5.8 and -2.6 kcal/mol, respectively, by the DFT(B3LYP) method. These MP4(SDQ)-calculated binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are similar to that of Pt(PH3)2(C2H4), which strongly suggests that these complexes can be successfully synthesized. The binding energy of Pt(PH3)2(C60) is evaluated to be 44.8 and 45.5 kcal/mol with the ONIOM(MP4(SDQ):UFF) and ONIOM(MP4(SDQ):B3LYP) methods, respectively, and that of the Pd analogue is evaluated to be 39.9 kcal/mol with the ONIOM(MP4(SDQ):UFF) method, whereas the DFT(B3LYP), DFT(BVP86), and DFT(BPW91) methods provide much smaller binding energies. It is noted that these binding energies are much larger than those of the ethylene, corannulene, and sumanene analogues. This difference is reasonably interpreted in terms that the LUMO of C60 is at much lower energy than those of ethylene, corannulene, and sumanene. We investigated also how to separate the high level and the low level regions in the ONIOM calculation of M(PH3)2(C60) and proposed here the reasonable way to evaluate the binding energy of transition-metal complexes of C60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号