首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper, exponential rational function method is applied to obtain analytical solutions of the space–time fractional Fokas equation, the space–time fractional Zakharov Kuznetsov Benjamin Bona Mahony, and the space–time fractional coupled Burgers’ equations. As a result, some exact solutions for them are successfully established. These solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie’s modified Riemann–Liouville sense. The exact solutions obtained by the proposed method indicate that the approach is easy to implement and effective.  相似文献   

2.
In this paper, the ansatz method and the functional variable method are employed to find new analytic solutions for the space–time nonlinear fractional wave equation, the space–time fractional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation and the space–time fractional modified Korteweg–de Vries–Zakharov–Kuznetsov equation. As a result, some exact solutions are obtained in terms of hyperbolic and periodic functions. It is shown that the proposed methods provide a more powerful mathematical tool for constructing exact solutions for many other nonlinear fractional differential equations occurring in nonlinear physical phenomena. We have also presented the numerical simulations for these equations by means of three dimensional plots.  相似文献   

3.
We deal with the Wick-type stochastic fractional Korteweg de–Vries(KdV) equation with conformable derivatives.With the aid of the Exp-function method, white noise theory, and Hermite transform, we produce a novel set of exact soliton and periodic wave solutions to the fractional KdV equation with conformable derivatives. With the help of inverse Hermite transform, we get stochastic soliton and periodic wave solutions of the Wick-type stochastic fractional KdV equation with conformable derivatives. Eventually, by an application example, we show how the stochastic solutions can be given as Brownian motion functional solutions.  相似文献   

4.
ABSTRACT

In this paper, we present the exact solutions obtained for the space–time conformable generalized Hirota–Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. The conformable sub-equation method is applied to obtain the solutions; the solutions obtained are compared with the extended tanh-function method for the special case when the fractional order takes the integer order. The analytical solutions show that the conformable sub-equation method is very effective for the conformable-coupled KdV and mKdV equations.  相似文献   

5.
In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained.  相似文献   

6.
In this paper, the first integral method and the functional variable method are used to establish exact traveling wave solutions of the space–time fractional Schrödinger–Hirota equation and the space–time fractional modified KDV–Zakharov–Kuznetsov equation in the sense of conformable fractional derivative. The results obtained confirm that proposed methods are efficient techniques for analytic treatment of a wide variety of the space–time fractional partial differential equations.  相似文献   

7.
A fractional sub-equation method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, the nonlinear time fractional biological population model and (4+1)-dimensional space-time fractional Fokas equation are considered. As a result, three types of exact analytical solutions are obtained.  相似文献   

8.
In this work, the new analytical exact solution of a highly nonlinear fractional partial differential equation (FPDE) has been presented; specifically space-time fractional (3+1)-dimensional Jimbo–Miwa (JM) equation. As a consequence of the applied extended (G'/G)-expansion method, the new analytical exact solution of the governing equation has been acquired successfully. Moreover, the physical natures of the solutions have been analyzed here by means of numerical simulations.  相似文献   

9.
Ozkan Guner  Ahmet Bekir 《中国物理 B》2016,25(3):30203-030203
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space–time fractional modified Benjamin–Bona–Mahoney(m BBM) equation, the time fractional m Kd V equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional derivatives are described in the modified Riemann–Liouville sense.  相似文献   

10.
The Ginzburg–Landau (GL) equation is one of the most important nonlinear equation in physics. It is used to model a vast variety of phenomena in physics like nonlinear waves, second order phase transitions, Bose–Einstein condensation, superfluidity, superconductivity, liquid crystals and strings in field theory. In this work, new exact, periodic and explicit solutions of a time fractional GL equation involving conformable fractional derivatives with Kerr law nonlinearity have been found. The Kerr law nonlinearity is due to the non-harmonic motion of electrons under the influence of an applied field. To determine the solution of the model, we have employed a couple of integration algorithms, solitary wave ansatz and \(\exp (-\varphi ({\chi }\))) methods. New periodic and hyperbolic soliton solutions are found as well as the constraint condition for the existence of the solution.  相似文献   

11.
In this paper, we study sine-Gordon equation in order to obtain exact solitary wave solutions in the domain of fractional calculus. By using the definition of conformable fractional derivative, we obtain analytical solutions of time, space and time-space fractional sine-Gordon equations. We analyze graphically the effect of fractional order on evolution of the kink and antikink type solitons.  相似文献   

12.
In this paper, a new approach, namely an ansatz method is applied to find exact solutions for nonlinear fractional differential equations in the sense of modified Riemann–Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to solve the fractional-order biological population model and the space–time fractional modified equal width equation, and as a result, some dark soliton solutions for them are established.  相似文献   

13.
Many practical models in interdisciplinary fields can be described with the help of fractional-order nonlinear partial differential equations(NPDEs). Fractional-order NPDEs such as the space-time fractional Fokas equation, the space-time Kaup–Kupershmidt equation and the space-time fractional (2+1)-dimensional breaking soliton equation have been widely applied in many branches of science and engineering. So, finding exact traveling wave solutions are very helpful in the theories and numerical studies of such equations. More precisely, fractional sub-equation method together with the proposed technique is implemented to obtain exact traveling wave solutions of such physical models involving Jumarie’s modified Riemann–Liouville derivative. As a result, some new exact traveling wave solutions for them are successfully established. Also, (1+1)-dimensional plots and 1-dimensional plots of some of the derived solutions are given to visualize the dynamics of the considered NPDEs. The obtained results reveal that the proposed technique is quite effective and convenient for obtaining exact solutions of NPDEs with fractional-order.  相似文献   

14.
ABSTRACT

The Klein–Gordon equation plays an important role in mathematical physics. In this paper, a direct method which is very effective, simple, and convenient, is presented for solving the conformable fractional Klein–Gordon equation. Using this analytic method, the exact solutions of this equation are found in terms of the Jacobi elliptic functions. This method is applied to both time and space fractional equations. Some solutions are also illustrated by the graphics.  相似文献   

15.
This work studies exact solvability of a class of fractional reaction-diffusion equation with the Riemann-Liouville fractional derivatives on the half-line in terms of the similarity solutions. We derived the conditions for the equation to possess scaling symmetry even with the fractional derivatives. Relations among the scaling exponents are determined, and the appropriate similarity variable introduced. With the similarity variable we reduced the differential partial differential equation to a fractional ordinary differential equation. Exactly solvable systems are then identified by matching the resulted ordinary differential equation with the known exactly solvable fractional ones. Several examples involving the three-parameter Mittag-Leffler function (Kilbas-Saigo function) are presented. The models discussed here turn out to correspond to superdiffusive systems.  相似文献   

16.
In this study, a more general version of F-expansion method is proposed. With this offered method, more than one Jacobi elliptic functions are located in the solution function. We seek analytical solutions of the space-time fractional cubic Schrodinger equation by use of the new type of F-expansion method. Consequently, multifarious exact analytical solutions consisting of single, double, and multiple combined Jacobi elliptic functions solutions are acquired.  相似文献   

17.
Nonlinear fractional differential equations are encountered in various fields of mathematics, physics, chemistry, biology, engineering and in numerous other applications. Exact solutions of these equations play a crucial role in the proper understanding of the qualitative features of many phenomena and processes in various areas of natural science. Thus, many effective and powerful methods have been established and improved. In this study, we establish exact solutions of the time fractional biological population model equation and nonlinear fractional Klein–Gordon equation by using the modified simple equation method.  相似文献   

18.
WANG Qi 《理论物理通讯》2007,47(3):413-420
Based upon the Adomian decomposition method, a scheme is developed to obtain numerical solutions of a fractional Boussinesq equation with initial condition, which is introduced by replacing some order time and space derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the traditional Adomian decomposition method for differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional differential equations. The solutions of our model equation are calculated in the form of convergent series with easily computable components.  相似文献   

19.
The complete discrimination system method is employed to find exact solutions for a dispersive cubic–quintic nonlinear Schrödinger equation with third order and fourth order time derivatives. As a result, we derive a range of solutions which include triangular function solutions, kink solitary wave solutions, dark solitary wave solutions, Jacobian elliptic function solutions, rational function solutions and implicit analytical solutions. Numerical simulations are presented to visualize the mechanism of Eq. (1) by selecting appropriate parameters of the solutions. The comparison between our results and other's works are also given.  相似文献   

20.
The current work presents analytical solutions of a nonlinear conformable time-fractional equation by using two different techniques. These are the modified simple equation method and the exponential rational function method. Based on the conformable fractional derivative and traveling wave transformation, the fractional partial differential equation is turned into the nonlinear non-fractional ordinary differential equation. Therefore, we implement the algorithms to this nonlinear non-fractional ordinary differential equation. To the best of our knowledge, the exact solutions obtained in this paper might be very useful in various areas of applied mathematics in interpreting some physical phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号