首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X(2+), X(4+), XH(2), and XH(3) (-) (X=Si-Pb) as well as X(3+), XH(3), and XF(3) (X=P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH(3) (-), XH(3), and XF(3), and is equally large in XH(2) as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of approximately 1500 ppm between BiH(3) and BiF(3). The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal quantum number. The relative contributions converge to universal fractions for the core and subvalence ns shells. The valence shell contribution is negligible, which explains the HAHA characteristics of the FC/SZ-KE term. Although the nonrelativistic theory gives correct chemical shift trends in present systems, the third-order SO-I terms are necessary for more reliable predictions. All of the presently considered relativistic corrections provide significant HAHA contributions to absolute shielding in heavy atoms.  相似文献   

2.
Two expressions for nuclear-magnetic-shielding tensor components based on analytically differentiating the electronic energy of a system are presented. The first is based on a second-order Douglas-Kroll-Hess approach, in which the off-diagonal block terms of the transformed Dirac Hamiltonian are diminished to second order with respect to both the electrostatic nuclear attraction potential V and the magnetic vector potential A. The second expression is based on the method of Barysz-Sadlej-Snijders, in which the off-diagonal block terms in the transformed Dirac Hamiltonian are completely eliminated with respect to purely V terms, while they are diminished to second order with respect to terms including A. The two approaches are applied to the calculation of nuclear magnetic shieldings of HX (X=F, Cl, Br, I), H2X (X=O, S, Se, Te), and noble gas X (X =He,Ne,Ar,Kr,Xe) systems with common gauge origins. The results show that relativistic corrections of higher than second order are negligibly small, except for the paramagnetic parts of I, Te, and Xe shieldings. The present calculations yield very large positive values for the anisotropy of proton shielding, deltasigma(H) = sigmaparallel(H)-sigmaperpendicular(H), of HI compared to previous reports. Unfortunately, no experimental values for the anisotropy of proton shielding in HI are available for verification.  相似文献   

3.
4.
We present a combined molecular dynamics simulation and density functional theory investigation of the nuclear magnetic shielding constant of the (113)Cd(II) ion solvated in aqueous solution. Molecular dynamics simulations are carried out for the cadmium-water system in order to produce instantaneous geometries for subsequent determination of the nuclear magnetic shielding constant at the density functional theory level. The nuclear magnetic shielding constant is computed using a perturbation theory formalism, which includes nonrelativistic and leading order relativistic contributions to the nuclear magnetic shielding tensor. Although the NMR shielding constant varies significantly with respect to simulation time, the value averaged over increasing number of snapshots remains almost constant. The paramagnetic nonrelativistic contribution is found to be most sensitive to dynamical changes in the system and is mainly responsible for the thermal and solvent effects in solution. The relativistic correction features very little sensitivity to the chemical environment, and can be disregarded in theoretical calculations when a Cd complex is used as reference compound in (113)Cd NMR experiments, due to the mutual cancelation between individual relativistic corrections.  相似文献   

5.
Numerical calculations of relativistic effects on nuclear magnetic shielding constants sigma corresponding to all one-body operators obtained within a formalism developed in previous work were carried out. In this formalism, the elimination of small component scheme is applied to evaluate all quantities entering a four-component RSPT(2) expression of magnetic molecular properties. HX and CH3X (X=Br,I) were taken as model compounds. Calculations were carried out at the Hartree-Fock level for first-order quantities, and at the random-phase approximation (RPA) level for second- and third-order ones. It was found that values of sigma(X) are largely affected by several relativistic corrections not previously considered in the bibliography. sigma Values of the H nucleus are in close agreement with four-component RPA ones. Overall relativistic effects on the shift of sigma(X) from HX to CH3X are smaller than the nonrelativistic shifts.  相似文献   

6.
The isotropic 129Xe NMR chemical shift of atomic Xe dissolved in liquid benzene was simulated by combining classical molecular dynamics and quantum chemical calculations of 129Xe nuclear magnetic shielding. Snapshots from the molecular dynamics trajectory of xenon atom in a periodic box of benzene molecules were used for the quantum chemical calculations of isotropic 129Xe chemical shift using nonrelativistic density functional theory as well as relativistic Breit?CPauli perturbation corrections. Thus, the correlation and relativistic effects as well as the temperature and dynamics effects could be included in the calculations. Theoretical results are in a very good agreement with the experimental data. The most of the experimentally observed isotropic 129Xe shift was recovered in the nonrelativistic dynamical region, while the relativistic effects explain of about 8% of the total 129Xe chemical shift.  相似文献   

7.
We calibrate the methodology for the calculation of nuclear magnetic resonance (NMR) properties in novel organo-xenon compounds. The available state-of-the-art quantum-chemical approaches are combined and applied to the HXeCCH molecule as the model system. The studied properties are (129)Xe, (1)H, and (13)C chemical shifts and shielding anisotropies, as well as (131)Xe and (2)H nuclear quadrupole coupling constants. The aim is to obtain, as accurately as currently possible, converged results with respect to the basis set, electron correlation, and relativistic effects, including the coupling of relativity and correlation. This is done, on one hand, by nonrelativistic correlated ab initio calculations up to the CCSD(T) level and, on the other hand, for chemical shifts and shielding anisotropies by the leading-order relativistic Breit-Pauli perturbation theory (BPPT) with correlated ab initio and density-functional theory (DFT) reference states. BPPT at the uncorrelated Hartree-Fock level as well as the corresponding fully relativistic Dirac-Hartree-Fock method are found to be inapplicable due to a dramatic overestimation of relativistic effects, implying the influence of triplet instability in this multiply bonded system. In contrast, the fully relativistic second-order Moller-Plesset perturbation theory method can be applied for the quadrupole coupling, which is a ground-state electric property. The performance of DFT with various exchange-correlation functionals is found to be inadequate for the nonrelativistic shifts and shielding anisotropies as compared to the CCSD(T) results. The relativistic BPPT corrections to these quantities can, however, be reasonably predicted by DFT, due to the improved triplet excitation spectrum as compared to the Hartree-Fock method, as well as error cancellation within the five main BPPT contributions. We establish three computationally feasible models with characteristic error margins for future calculations of larger organo-xenon compounds to guide forthcoming experimental NMR efforts. The predicted (129)Xe chemical shift in HXeCCH is in a novel range for this nucleus, between weakly bonded or solvated atomic xenon and xenon in the hitherto characterized molecules.  相似文献   

8.
Hartree–Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange‐correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin‐orbit zeroth‐order regular approximation Hamiltonian in combination with the large Slater‐type basis set QZ4P as well as with the four‐component Dirac–Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization‐consistent basis sets aug‐pcSseg‐4 for He, Ne and Ar, aug‐pcSseg‐3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero‐point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
10.
11.
An analytic scheme for the computation of scalar-relativistic corrections to nuclear forces is presented. Relativistic corrections are included via a perturbative treatment involving the mass-velocity and the one-electron and two-electron Darwin terms. Such a scheme requires mixed second derivatives of the nonrelativistic energy with respect to the relativistic perturbation and the nuclear coordinates and can be implemented using available second-derivative techniques. Our implementation for Hartree-Fock self-consistent field, second-order Moller-Plesset perturbation theory, as well as the coupled-cluster level is used to investigate the relativistic effects on the geometrical parameters and harmonic vibrational frequencies for a set of molecules containing light elements (HX, X=F, Cl, Br; H2X, X=O, S; HXY, X=O, S and Y=F, Cl, Br). The focus of our calculations is the basis-set dependence of the corresponding relativistic effects, additivity of electron correlation and relativistic effects, and the importance of core correlation on relativistic effects.  相似文献   

12.
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order M?ller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.  相似文献   

13.
A comprehensive investigation of selenium chemical shift tensors is presented. Experimentally determined chemical shift tensors were obtained from solid-state 77Se NMR spectra for several organic, organometallic, or inorganic selenium-containing compounds. The first reported indirect spin-spin coupling between selenium and chlorine is observed for Ph(2)SeCl(2) where 1J(77Se,35Cl)iso is 110 Hz. Selenium magnetic shielding tensors were calculated for all of the molecules investigated using zeroth-order regular approximation density functional theory, ZORA DFT. The computations provide the orientations of the chemical shift tensors, as well as a test of the theory for calculating the magnetic shielding interaction for heavier elements. The ZORA DFT calculations were performed with nonrelativistic, scalar relativistic, and scalar with spin-orbit relativistic levels of theory. Relativistic contributions to the magnetic shielding tensor were found to be significant for (NH4)2WSe4 and of less importance for organoselenium, organophosphine selenide, and inorganic selenium compounds containing lighter elements.  相似文献   

14.
We report, for the first time, a prediction of the line shapes that would be observed in the (129)Xe nuclear magnetic resonance (NMR) spectrum of xenon in the cages of clathrate hydrates. We use the dimer tensor model to represent pairwise contributions to the intermolecular magnetic shielding tensor for Xe at a specific location in a clathrate cage. The individual tensor components from quantum mechanical calculations in clathrate hydrate structure I are represented by contributions from parallel and perpendicular tensor components of Xe-O and Xe-H dimers. Subsequently these dimer tensor components are used to reconstruct the full magnetic shielding tensor for Xe at an arbitrary location in a clathrate cage. The reconstructed tensors are employed in canonical Monte Carlo simulations to find the Xe shielding tensor component along a particular magnetic field direction. The shielding tensor component weighted according to the probability of finding a crystal fragment oriented along this direction in a polycrystalline sample leads to a predicted line shape. Using the same set of Xe-O and Xe-H shielding functions and the same Xe-O and Xe-H potential functions we calculate the Xe NMR spectra of Xe atom in 12 distinct cage types in clathrate hydrates structures I, II, H, and bromine hydrate. Agreement with experimental spectra in terms of the number of unique tensor components and their relative magnitudes is excellent. Agreement with absolute magnitudes of chemical shifts relative to free Xe atom is very good. We predict the Xe line shapes in two cages in which Xe has not yet been observed.  相似文献   

15.
The nonrelativistic and four-component fully relativistic calculations of 1H, 15N, 59Co, 103Rh, and 193Ir shielding constants of pentaammineaquacomplexes of cobalt(III), rhodium(III), and iridium(III) were carried out at the density functional theory (DFT) level of theory. The noticeable deshielding relativistic corrections were observed for nitrogen shielding constants (chemical shifts), whereas those corrections were found to be negligible for protons. For the transition metals cobalt, rhodium, and iridium, relativistic corrections to their nuclear magnetic resonance (NMR) shielding constants were found to be rather small for cobalt and rhodium (some 5–10%), whereas they are essentially larger for iridium (up to 70%).  相似文献   

16.
This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X=C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.  相似文献   

17.
The leading-order perturbation theory approach to relativistic effects on the nuclear magnetic shielding provides an economic method for obtaining the chemical shifts in heavy-element containing systems. The method features detailed analysis potential in terms of the different physical mechanisms affecting the shielding tensors of heavy nuclei. The perturbative nature, however, results in an increasing error with increasingly heavy elements in the system. In this work, we investigate the performance of the Breit-Pauli perturbation theory (BPPT) against fully relativistic four-component theory in computing the nuclear shielding constants as well as the chemical shifts with respect to corresponding atomic ions of group-12 metals, M = Zn, Cd, and Hg, in dimethyl M(CH(3))(2) and aqueous M(H(2)O)(6)(2+) complexes. It is shown that five out of the total of sixteen BPPT correction terms are responsible for most of the relativistic corrections for the chemical shift of studied metals. The relativity is important already for Cd and BPPT is proven to work well up to Hg for the chemical shift, as calibrated with the fully relativistic method.  相似文献   

18.
Terms arising from the relativistic spin-orbit effect on both hyperfine and Zeeman interactions are introduced to density-functional theory calculation of nuclear magnetic shielding in paramagnetic molecules. The theory is a generalization of the former nonrelativistic formulation for doublet systems and is consistent to O(alpha4), the fourth power of the fine structure constant, for the spin-orbit terms. The new temperature-dependent terms arise from the deviation of the electronic g tensor from the free-electron g value as well as spin-orbit corrections to hyperfine coupling tensor A, the latter introduced in the present work. In particular, the new contributions include a redefined isotropic pseudocontact contribution that consists of effects due to both the g tensor and spin-orbit corrections to hyperfine coupling. The implementation of the spin-orbit terms makes use of all-electron atomic mean-field operators and/or spin-orbit pseudopotentials. Sample results are given for group-9 metallocenes and a nitroxide radical. The new O(alpha4) corrections are found significant for the metallocene systems while they obtain small values for the nitroxide radical. For the isotropic shifts, none of the three beyond-leading-order hyperfine contributions are negligible.  相似文献   

19.
Second derivatives of nuclear shielding constants with respect to an electric field, i.e., shielding polarizabilities, have been calculated for the noble gas atoms from helium to xenon. The calculations have been carried out using the four-component relativistic Hartree-Fock method. In order to assess the importance of the individual relativistic corrections, the shielding polarizabilities have also been calculated at the nonrelativistic Hartree-Fock level, with spin-orbit and scalar (Darwin and mass-velocity) effects having been established by perturbative methods. Electron correlation effects have been estimated using the second-order polarization propagator approach. The relativistic effects on the tensor components of the shielding polarizabilities are found to be larger and changing less regularly with the atomic number than for the shielding constant itself. However, there is a partial cancellation of the contributions to the parallel and perpendicular components of the shielding polarizability and as a consequence the mean shielding polarizability is far less affected than the individual components.  相似文献   

20.
A new relativistic four-component density functional approach for calculations of NMR shielding tensors has been developed and implemented. It is founded on the matrix formulation of the Dirac-Kohn-Sham (DKS) method. Initially, unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component. The second-order coupled perturbed DKS method is then based on the use of restricted magnetically balanced basis sets for the small component. Benchmark relativistic calculations have been carried out for the (1)H and heavy-atom nuclear shielding tensors of the HX series (X=F,Cl,Br,I), where spin-orbit effects are known to be very pronounced. The restricted magnetically balanced basis set allows us to avoid additional approximations and/or strong basis set dependence which arises in some related approaches. The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of chemical shifts and spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in property calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号