首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An exact quantum master equation formalism is constructed for the efficient evaluation of quantum non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. A novel truncation scheme is further proposed and compared with other approaches to close the resulting hierarchically coupled equations of motion. The interplay between system-bath interaction strength, non-Markovian property, and required level of hierarchy is also demonstrated with the aid of simple spin-boson systems.  相似文献   

2.
Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model.  相似文献   

3.
Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is assumed linear plus square in the system coordinate, but linear in the bath coordinates. The square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy relaxation in the stochastic model, the system part is then transformed into an energy eigenstate representation without using the rotating wave approximation. Two-dimensional (2D) infrared spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck (LTC-QFP) equation for a colored noise bath and by the stochastic theory. In motional narrowing regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The preconditions for validity of the stochastic theory for molecular vibrational motion are also discussed.  相似文献   

4.
The recently proposed multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) approach to evaluating reactive quantum dynamics is applied to two model condensed-phase proton transfer reactions. The models consist of a one-dimensional double-well "system" that is bilinearly coupled to a "bath" of harmonic oscillators parameterized to represent a condensed-phase environment. Numerically exact quantum-mechanical flux correlation functions and thermal rate constants are obtained for a broad range of temperatures and system-bath coupling strengths, thus demonstrating the efficacy of the ML-MCTDH approach. Particular attention is focused on the regime where low temperatures are combined with weak system-bath coupling. Under such conditions it is found that long propagation times are often required and that quantum coherence effects may prevent a rigorous determination of the rate constant.  相似文献   

5.
Simulating tunneling processes as well as their observation are challenging problems for many areas. In this study, we consider a double-well potential system coupled to a heat bath with a linear-linear (LL) and square-linear (SL) system-bath interactions. The LL interaction leads to longitudinal (T1) and transversal (T2) homogeneous relaxations, whereas the SL interaction leads to the inhomogeneous dephasing (T2*) relaxation in the white noise limit with a rotating wave approximation. We discuss the dynamics of the double-well system under infrared (IR) laser excitations from a Gaussian-Markovian quantum Fokker-Planck equation approach, which was developed by generalizing Kubo's stochastic Liouville equation. Analytical expression of the Green function is obtained for a case of two-state-jump modulation by performing the Fourier-Laplace transformation. We then calculate a two-dimensional infrared signal, which is defined by the four-body correlation function of optical dipole, for various noise correlation time, system-bath coupling parameters, and temperatures. It is shown that the bath-induced vibrational excitation and relaxation dynamics between the tunneling splitting levels can be detected as the isolated off-diagonal peaks in the third-order two-dimensional infrared (2D-IR) spectroscopy for a specific phase matching condition. Furthermore, this spectroscopy also allows us to directly evaluate the rate constants for tunneling reactions, which relates to the coherence between the splitting levels; it can be regarded as a novel technique for measuring chemical reaction rates. We depict the change of reaction rates as a function of system-bath coupling strength and a temperature through the 2D-IR signal.  相似文献   

6.
将最近建立的体系-热库纠缠定理(SBET)扩展到非平衡的情形. 其中, 任意体系与处于不同温度的多个高斯型热库环境相耦合. 现有的SBET将体系-热库的纠缠响应函数与体系的局域响应函数联系起来, 而扩展的理论则关注通过分子结的非平衡稳态量子输运流. 新理论是基于广义Langevin方程建立的, 它与量子情形下的非平衡热力学密切相关.  相似文献   

7.
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is applied to simulate the quantum dynamics and thermal rate constant of the Azzouz-Borgis model of proton transfer in a polar solvent. To this end, the original atomistic potential is mapped to a system-bath model. Employing the flux correlation function formalism and importance sampling techniques, accurate quantum mechanical rate constants are obtained, which provide a benchmark for evaluating approximate approaches to study the quantum dynamics of condensed-phase chemical reactions. Furthermore, the validity of the mapping procedure is discussed based on the comparison of the classical dynamics of the original atomistic Azzouz-Borgis model and the mapped system-bath model.  相似文献   

8.
9.
10.
New features of molecular wires can be observed when they are irradiated by laser fields. These effects can be achieved by periodically oscillating fields but also by short laser pulses. The theoretical foundation used for these investigations is a density-matrix formalism where the full system is partitioned into a relevant part and a thermal fermionic bath. The derivation of a quantum master equation, either based on a time-convolutionless or time-convolution projection-operator approach, incorporates the interaction with time-dependent laser fields nonperturbatively and is valid at low temperatures for weak system-bath coupling. From the population dynamics the electrical current through the molecular wire is determined. This theory including further extensions is used for the determination of electron transport through molecular wires. As examples, we show computations of coherent destruction of tunneling in asymmetric periodically driven quantum systems, alternating currents and the suppression of the directed current by using a short laser pulse.  相似文献   

11.
12.
In the study of open quantum systems, the polaron transformation has recently attracted a renewed interest as it offers the possibility to explore the strong system-bath coupling regime. Despite this interest, a clear and unambiguous analysis of the regimes of validity of the polaron transformation is still lacking. Here we provide such a benchmark, comparing second order perturbation theory results in the original untransformed frame, the polaron frame, and the variational extension with numerically exact path integral calculations of the equilibrium reduced density matrix. Equilibrium quantities allow a direct comparison of the three methods without invoking any further approximations as is usually required in deriving master equations. It is found that the second order results in the original frame are accurate for weak system-bath coupling; the results deteriorate when the bath cut-off frequency decreases. The full polaron results are accurate for the entire range of coupling for a fast bath but only in the strong coupling regime for a slow bath. The variational method is capable of interpolating between these two methods and is valid over a much broader range of parameters.  相似文献   

13.
The dissipative quantum dynamics of an anharmonic oscillator coupled to a bath is studied with the purpose of elucidating the differences between the relaxation to a spin bath and to a harmonic bath. Converged results are obtained for the spin bath by the surrogate Hamiltonian approach. This method is based on constructing a system-bath Hamiltonian, with a finite but large number of spin bath modes, that mimics exactly a bath with an infinite number of modes for a finite time interval. Convergence with respect to the number of simultaneous excitations of bath modes can be checked. The results are compared to calculations that include a finite number of harmonic modes carried out by using the multiconfiguration time-dependent Hartree method of Nest and Meyer [J. Chem. Phys. 119, 24 (2003)]. In the weak coupling regime, at zero temperature and for small excitations of the primary system, both methods converge to the Markovian limit. When initially the primary system is significantly excited, the spin bath can saturate restricting the energy acceptance. An interaction term between bath modes that spreads the excitation eliminates the saturation. The loss of phase between two cat states has been analyzed and the results for the spin and harmonic baths are almost identical. For stronger couplings, the dynamics induced by the two types of baths deviate. The accumulation and degree of entanglement between the bath modes have been characterized. Only in the spin bath the dynamics generate entanglement between the bath modes.  相似文献   

14.
We present a semiclassical (SC) approach for quantum dissipative dynamics, constructed on basis of the hierarchical-equation-of-motion (HEOM) formalism. The dynamical components considered in the developed SC-HEOM are wavepackets' phase-space moments of not only the primary reduced system density operator but also the auxiliary density operators (ADOs) of HEOM. It is a highly numerically efficient method, meanwhile taking into account the high-order effects of system-bath couplings. The SC-HEOM methodology is exemplified in this work on the hierarchical quantum master equation[J. Chem. Phys. 131 , 214111 (2009)] and numerically demonstrated on linear spectra of anharmonic oscillators.  相似文献   

15.
The results of our earlier work [C. Brooksby, O. V. Prezhdo, and P. J. Reid, J. Chem. Phys. 119, 9111 (2003)] rationalizing the surprisingly weak solvent dependence of the dynamics following photoexcitation of chlorine dioxide in water, chloroform, and cyclohexane are thoroughly tested. Comparisons are made between equilibrium and nonequilibrium solvent response, equilibrium response in the ground and excited electronic states, as well as the cumulant and direct evaluation of the optical response function. In general, the linear response and cumulant approximations are found to hold, although minor deviations are found with all solvents. The ground state, linear response, and cumulant data show best agreement with experiment, most likely due to the better tested ground-state force field and the robust behavior of the linear response and cumulant approximations. The main conclusion of our earlier work explaining the weak solvent dependence by the domination of the van der Waals interaction component remains intact within the more advanced treatments. However, the molecular origin of this surprising experimental observation is different in water and chloroform compared to cyclohexane.  相似文献   

16.
Density functional theory, in general, is considered to underestimate the weak van der Waals type of intermolecular interactions. We optimized parameters of the local response dispersion (LRD) method applied to the long‐range corrected exchange‐correlation functionals (LC‐BOP12+LRD and LCgau‐BOP+LRD) on the interaction energy for the complexes in the recently compiled S66 database and found to be comparable with the high‐level wave function‐based methods reported in ?ezá? et al. (J. Chem. Theory Comput. 2011 , 7, 2427). Our calculations with the S66 intermolecular complexes at equilibrium geometries suggests that the LC‐BOP12+LRD and LCgau‐BOP+LRD are well‐balanced and lower cost alternatives to the methods reported in the database. Further, test on the S66X8 database (with eight nonequilibrium points) and the HBC6 and NBC10 database shows LC+LRD method with newly optimized parameters is a promising candidate for dealing such weak interactions. Finally, the new parameterized LC+LRD method was tested on X40 benchmark halogenated complexes.Copyright © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Isothermal microcalorimeter was modified to measure slow and weak thermal dissipation for developmental and evolutionary biology. The calorimeter can detect the continuous thermal dissipation of the ampoule at P=20 nW and fast thermal events with E=0.1 μJ. Baseline was stabilized to be ±10 nWover a week. By using this calorimeter, post-dormant development of a single larva of Artemia franciscana (Great Salt Lake) was measured as a function of incubation time at T=293.17 K. Characteristic thermogenesis was observed at emergence, hatching and growth. The energy of yolk in a cyst was evaluated to be 38 mJ in average on the basis of the total thermogenesis of a larva.  相似文献   

18.
19.
量子耗散与量子输运的级联方程组方法   总被引:1,自引:0,他引:1  
郑晓  徐瑞雪  许健  金锦双  胡洁  严以京 《化学进展》2012,24(6):1129-1152
级联方程已成为研究量子开放系统的稳态性质和动力学过程的重要方法。本文旨在系统综述量子耗散和量子输运的级联方程组方法的建立、发展以及在理论、算法和应用方面的一些最新进展。级联方程形式理论的建立以影响泛函路径积分为基础,并具有数值上的高效性和应用上的灵活性,可用于研究分子体系的复杂动力学过程以及强关联电子体系中的量子输运。其级联耦合结构以非微扰的方式揭示了多体相互作用、体系-环境耦合、非马尔可夫记忆等的综合效应。作为应用示例,我们采用级联方程模拟了生物光富集体系的二维相干动力学光谱以及含时电子输运过程中的动态近藤效应。  相似文献   

20.
To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号