首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from the Ornstein-Zernike equation the authors derive an analytical theory, at the level of pair correlation functions, which coarse grains polymer melts into liquids of interacting soft colloidal particles. Since it is analytical, the presented coarse-graining approach will be useful in developing multiscale modeling procedures to simulate complex fluids of macromolecules. The accuracy of the theory is tested by its capacity to reproduce the liquid structure, as given by the center-of-mass intermolecular total pair correlation function. The theory is found to agree well with the structure predicted by molecular dynamics simulations of the liquid described at the united atom level as well as by molecular dynamics simulations of the liquid of interacting colloidal particles. The authors perform simulations of the liquid of interacting colloidal particles having as input the potential obtained from their analytical total pair correlation function by enforcing the hypernetted-chain closure approximation. Tests systems are polyethylene melts of chains with increasing degrees of polymerization and polymer melts of chains with different chemical architectures. They also discuss the effect of adopting different conventional approximations for intra- and intermolecular monomer structure factors on the accuracy of the coarse-graining procedure, as well as the relevance of higher-order corrections to their expression.  相似文献   

2.
In the distribution function approach to the conformational and thermodynamic properties of polymeric liquids site-site (pair) distribution functions are essential components of the theory. These site-site pair distribution functions are basically mean fields obeying integral equations. In our recent works, a set of self-consistent field equations has been proposed for site-site pair correlation functions which allow us to study conformational and thermodynamic properties of polymeric liquids. In this article, we present a short review of the theory and its applications to a number of aspects of polymeric liquids we have made until now. We also present a self-consistent version of the polymer reference interaction site model where the integral equations for the intramolecular site-site correlation functions are obtained from the Kirkwood hierarchy on the basis of the present theory. The present theory is shown to predict correctly the scaling properties associated with swollen and collapsed polymers in good and poor solvents, respectively. At finite densities, self-consistent solutions of the intra- and intermolecular equations yield the structures and thermodynamics of polymer melts which are favorably compared with Monte Carlo simulation results. Self-consistent theory results are found to be more accurate than the non-self-consistent approaches that use an ideal Gaussian chain conformation distribution function. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
A quantitative theory of hydrodynamic interactions in unentangled polymer melts and concentrated solutions is presented. The study is focussed on the pre-Rouse transient time regimes (t < τ(R), the Rouse relaxation time) where the hydrodynamic response is governed mainly by the viscoelastic effects. It is shown that transient viscoelastic hydrodynamic interactions are not suppressed (screened) at large distances and are virtually independent of polymer molecular mass. A number of transient regimes of unusual and qualitatively different behavior of isotropic and anisotropic hydrodynamic response functions are elucidated. The regimes are characterized in terms of two main length-scale dependent characteristic times: momentum spreading time τ(i) ∝ r(4∕3) and viscoelastic time τ(?) ∝ r(4). It is shown that for t > τ(i) the viscoelastic hydrodynamic interactions can be described in terms of the time or length scale dependent effective viscosity which, for t < τ(R) and/or for r < R(coil), turns out to be much lower than the macroscopic "polymer" viscosity η(m). The theory also involves a quantitative analysis of the length-scale dependent stress relaxation in polymer melts. The general predictions for hydrodynamic interactions in thermostated systems with Langevin friction are obtained as well.  相似文献   

4.
Molecular dynamics simulations were used to study the conformational dynamics of a bead-spring model polymer in an explicit solvent under good solvent conditions. The dynamics of the polymer chain were investigated using an analysis of the time autocorrelation functions of the Rouse coordinates of the polymer chain. We have investigated the variation of the correlation functions with polymer chain length N, solvent density rho, and system size. The measured initial decay rates gamma(p) of the correlation functions were compared with the predictions from a theory of polymer dynamics which uses the Oseen tensor to describe hydrodynamic interactions between monomers. Over the range of chain lengths considered (N = 30-60 monomers), the predicted scaling of gamma(p) proportional to N(-3nu) was observed at high rho, where nu is the polymer scaling exponent. The predicted gamma(p) are generally higher than the measured values. This discrepancy increases with decreasing rho, as a result in the breakdown in the conditions required for the Oseen approximation. The agreement between theory and simulation at high rho improves considerably if the theoretical expression for gamma(p) is modified to avoid sum-to-integral approximations, and if the values of (R(p)2), which are used in the theory, are taken directly from the simulation rather than being calculated using approximate scaling relations. The observed finite-size scaling of gamma(p) is not quantitatively consistent with the theoretical predictions.  相似文献   

5.
A theoretical analysis has been developed to predict fluorescence nonradiative energy transfer (NBET) behavior in homogeneous and phase-separated polymer blends. Conditions where intermolecular correlations need to be included are examined by first investigating the effect of including intermolecular correlations in predictions of NRET behavior in donor and trap (acceptor) end-labeled polymer melts. Donor fluorescence decays and energy transfer efficiencies are predicted for several different polymer systems using donor-trap intermolecular correlations in the theoretical analysis. These results are compared quantitatively to the same predictions recalculated without correlations and demonstrate the need to consider the effects of correlations when analyzing NRET measurements used for quantitative study of phase behavior. For the nonradiative energy transfer systems investigated here, correlation effects can often result in substantial differences, up to 60% as compared to the uncorrelated case, in predictions of relative energy transfer efficiency for bulk polymer. In the case of the blends, the effect of including intermolecular correlations is strongly a function of composition. A two-phase model is proposed to establish a quantitative method for relating energy transfer efficiency to phase-separated blend composition, and it is demonstrated that significant errors in interpretation of experimental NRET data may result if correlation effects are not included. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Summary: In this work, the behavior of some internal microstructural models with different mobility tensors has been studied for polymer melts and solutions under steady and transient simple shear and elongational flows. The time evolution equations for conformation and stress tensors in the models reviewed have their root in the Generalized Poisson bracket formalism. Two different families of conformational models have been selected for this study. The first family is based on the Modified Finitely Extensible Nonlinear Elastic (FENE‐P) energy while the second uses a Volume Preserving Conformational Rheological (VPCR) model based on the Hookean Helmholtz free energy function. Several expressions for the mobility tensor based on the previously mentioned energy functions are used to obtain the models. The sensitivity of both families of models to the choice of the mobility tensors on the prediction of material functions in the transient and steady flows is discussed. Also, effects of shear rate on the material functions in start‐up and relaxation shear flows for both models are studied. The predictions of both models are compared with experimental data taken from the literature for some polymer melts. These results show that the family of VPCR models is able to predict the steady shear and elongational flow material functions in an extended range of deformation rates whereas the family of FENE‐P models can predict the behavior of only some specified polymer melts.

Experimental data and VPCR model predictions for steady and elongational viscosity for PS [data of H. Munstedt, 1980].  相似文献   


7.
Density functional theory is applied to study properties of fully detailed, realistic models of polyethylene liquids near surfaces and compared to results from Monte Carlo simulations. When the direct correlation functions from polymer reference interaction site model (PRISM) theory are used as input, the theory somewhat underpredicts the density oscillations near the surface. However, good agreement with simulation is obtained with empirical scaling of the PRISM-predicted direct correlation functions. Effects of attractive interactions are treated using the random-phase approximation. The results of theoretical predictions for the attractive system are also in reasonable agreement with simulation results. In general, the theory performs best when the wall-polymer interaction strength is comparable to polymer-polymer interactions.  相似文献   

8.
应用Folry的缩聚理论处理铝酸盐型熔体(MO-Al2O3),得到了聚合阴离子的分布函数。通过缩聚反应平衡常数可将混合自由能和组元活度表达为熔体组成的函数。预期了产生凝胶化的条件。由模型所得理论曲线与实验结果进行了比较。  相似文献   

9.
The viscoelasticity of stretched polymer chains has been studied by the method of collisional dynamics. To this end, time correlation functions of the fluctuations of the microscopic stress tensor are modeled and relaxation moduli are expressed. Before, for stretched polymer networks, correlation functions used to be calculated in terms of an approximate theory that allowed one to estimate the strain dependences of loss modulus. The calculated dependences are shown to agree qualitatively with the results of measurements performed over a wide interval of strains, including prefracture strains. This theory is verified by comparing the time correlation functions of stress tensor fluctuations for a single stretched chain; these functions are found by computer-aided simulation and calculated on the basis of the existing analytical theory. In this case, a simple theory is adopted according to which a polymer molecule represents a chain composed of N atoms connected by freely jointed elastic bonds. The first and Nth atoms of this chain are attached by harmonic springs to immobile points located at a fixed distance. The decay of time correlation functions under study can be resolved into three stages. After a short initial interval provided by local motions, one can observe a region of power-law decay, which is followed by monoexponential decay at long times. The results of computer-aided simulation generally agree with the predictions of analytical theory. Certain discrepancies primarily concern the dependences of the exponent of power-law relaxation on the degree of chain stretching.  相似文献   

10.
We have generalized and applied the microscopic polymer reference interaction site model theory to study intermolecular pair correlation functions and collective structure factors of concentrated solutions and melts of spherical nanoparticles carrying one, two, or four tethered polymer chains. A complex interplay of entropy (translational, conformational, and packing) and enthalpy (particle-particle attraction) leads to different structural arrangements with distinctive small- and wide-angle scattering signatures. Strong concentration fluctuations indicative of aggregate formation and/or a tendency for microphase separation occur as the total packing fraction and/or particle-particle attraction strength increase. In analogy with block copolymers, the microphase spinodal curve is estimated by extrapolation of the inverse of the amplitude of the small-angle scattering peak. As the number of tethered chains on nanoparticles increases, the microphase separation boundary spinodal occurs at higher particle-particle attraction strength or lower temperature. For nanoparticles with two tethers, increasing the angle between the attached chains shifts the microphase spinodal to lower temperatures. For nanoparticles with four tethers, the structural correlations are insensitive to various symmetric placements. The tendency for microphase transition is enhanced upon asymmetrically placing all four tethers on one side of the particle due to the high anisotropy of steric hindrance.  相似文献   

11.
In this Perspective, we discuss the role of voids in transport processes in liquids and the manner in which the concept of voids enters the generic van der Waals equation of state and the modified free volume theory. The density fluctuation theory is then discussed and we show how the density fluctuation theory can be made a molecular theory with the help of the modified free volume theory and the generic van der Waals equation of state. The confluence of the aforementioned three theories makes it possible to calculate the transport coefficients of liquids by using the information on the equilibrium pair correlation function, which can be calculated either by an integral equation theory or Monte Carlo simulations. A number of relations between transport coefficients are also presented, which are derived on the basis of the density fluctuation theory. Since they can be used to obtain one transport coefficient from another they can be very useful in handling experimental and theoretical data. An application of the modified free volume theory to polymer melts is discussed as an example for a theory of transport properties of complex liquids.  相似文献   

12.
The microscopic polymer reference interaction site model theory is generalized and applied to study intermolecular pair correlation functions and collective structure factors of dense solutions and melts of spherical nanoparticles carrying a single tethered chain. The complex interplay of entropy (translational, conformational, and packing) and enthalpy (particle-particle attraction) leads to different structural arrangements with distinctive small and wide angle scattering signatures. Strong concentration fluctuations, indicative of aggregate formation and/or a tendency for microphase separation, occur as the total packing fraction and/or particle-particle attraction strength increase. In analogy with block copolymers, the microphase spinodal curve is estimated by extrapolation of the inverse of the amplitude of the small angle scattering peak. For nanoparticles that are twice the diameter of monomers, the microphase separation boundary spinodal occurs at higher particle-particle attraction strength (or lower temperature) as compared to the macrophase demixing curve for nanoparticles with no tethers when the packing fraction is below 0.45, while the opposite trend is observed above 0.45. Increasing nanoparticle diameter results in a reduction in the microphase spinodal temperature and a qualitative change in its packing fraction dependence.  相似文献   

13.
We perform molecular-dynamics simulations for polymer melts of the coarse-grained poly(vinyl alcohol) model that crystallizes upon slow cooling. To establish the properties of its high temperature, liquid state as a reference point, we characterize in detail the structural features of equilibrated polymer melts with chain lengths 5 ≤ N ≤ 1000 at a temperature slightly above their crystallization temperature. We find that the conformations of sufficiently long polymers with N > 50 obey essentially the Flory's ideality hypothesis. The chain length dependence of the end-to-end distance and the gyration radius follow the scaling predictions of ideal chains and the probability distributions of the end-to-end distance, and form factors are in good agreement with those of ideal chains. The intrachain correlations reveal evidences for incomplete screening of self-interactions. However, the observed deviations are small. Our results rule out any preordering or mesophase structure formation that are proposed as precursors of polymer crystallization in the melt. Moreover, we characterize in detail primitive paths of long entangled polymer melts and we examine scaling predictions of Rouse and the reptation theory for the mean squared displacement of monomers and polymers center of mass. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1376–1392  相似文献   

14.
The second-order integral-equation formalism of [Attard J. Chem. Phys. 91, 3072 (1989); 95, 4471 (1991)], applied previously to one-component hard spheres and Lennard-Jones fluids, as well as to their mixtures, is used to binary Widom-Rowlinson mixtures. Comparison with Monte Carlo simulations of the pair correlation functions and of the demixing phase diagram shows that this method is also quite accurate in the case of highly nonadditive mixtures. Moreover, the results of the second-order theory are compared with previous theoretical predictions. Our interest is also in the calculation of the bridge functions, i.e., parts of the radial distribution functions either not included or simply approximated in the usual theories.  相似文献   

15.
The conformational properties and static structure of freely jointed hard-sphere chains in matrices composed of stationary hard spheres are studied using Monte Carlo simulations and integral equation theory. The simulations show that the chain size is a nonmonotonic function of the matrix density when the matrix spheres are the same size as the monomers. When the matrix spheres are of the order of the chain size the chain size decreases monotonically with increasing matrix volume fraction. The simulations are used to test the replica-symmetric polymer reference interaction site model (RSP) integral equation theory. When the simulation results for the intramolecular correlation functions are input into the theory, the agreement between theoretical predictions and simulation results for the pair-correlation functions is quantitative only at the highest fluid volume fractions and for small matrix sphere sizes. The RSP theory is also implemented in a self-consistent fashion, i.e., the intramolecular and intermolecular correlation functions are calculated self-consistently by combining a field theory with the integral equations. The theory captures qualitative trends observed in the simulations, such as the nonmonotonic dependence of the chain size on media fraction.  相似文献   

16.
A statistical mechanical theory is employed to predict the structural and thermodynamic properties of polymeric liquids. The theory consists of a coupled set of self-consistent integral equations for the pair correlation functions which relates the polymer structure to molecular interaction potentials. In this article, the essentials of the method are reviewed and the results are shown in comparison with other theories and simulation data. Quantitative agreements are found between the results of the theory and those of the simulations for a wide range of density and temperature.  相似文献   

17.
Pair correlation in the ground state of the Li isoelectronic sequence is studied through four approximate wave functions which incorporate inter- and intrashell pair correlation. Of these functions, two possess symmetry appropriate to a three-electron system, while two do not. The functions are not variational functions in the usual sense. They are instead fixed linear combinations of products of orbitals and pair functions for the appropriate states of two-electron atoms. They are considered here as zero-order approximations to the exact wave functions, and the corresponding zero-order Hamiltonians are obtained. The simplest of these functions is improved by the introduction of a screening parameter for the “outer” electron. This latter function is found to be a satisfactory compromise between accuracy and simplicity and is proposed for study via higher-order perturbation theory.  相似文献   

18.

The theory of stimulated echo (SE) without magnetic field gradient is proposed. The theory made it possible for the first time to establish a relationship between the stimulated echo signal and correlation function of molecular mobility. Signals of free induction decay (FID) and SE in polymer networks and branched polymers were modeled. The type of the correlation function at different average chain lengths N 0 between knots and different distribution functions of the knots was determined. A strong influence of the molecular weight distribution (MWD) on the type of the correlation function in polymer melts was shown. Two methods were proposed for the numerical determination of the correlation function from the observed FID and SE signals. These methods gave an information about the molecular mobility and topological structure in the samples of branched polymethyl methacrylates of different structures and various molecular weights.

  相似文献   

19.
The polymer systems are discussed in the framework of the Landau-Ginzburg model. The model is derived from the mesoscopic Edwards Hamiltonian via the conditional partition function. We discuss flexible, semiflexible and rigid polymers. The following systems are studied: polymer blends, flexible diblock and multi-block copolymer melts, random copolymer melts, ring polymers, rigid-flexible diblock copolymer melts, mixtures of copolymers and homopolymers and mixtures of liquid crystalline polymers. Three methods are used to study the systems: mean-field model, self consistent one-loop approximation and self consistent field theory. The following problems are studied and discussed: the phase diagrams, scattering intensities and correlation functions, single chain statistics and behavior of single chains close to critical points, fluctuations induced shift of phase boundaries. In particular we shall discuss shrinking of the polymer chains close to the critical point in polymer blends, size of the Ginzburg region in polymer blends and shift of the critical temperature. In the rigid-flexible diblock copolymers we shall discuss the density nematic order parameter correlation function. The correlation functions in this system are found to oscillate with the characteristic period equal to the length of the rigid part of the diblock copolymer. The density and nematic order parameter measured along the given direction are anticorrelated. In the flexible diblock copolymer system we shall discuss various phases including the double diamond and gyroid structures. The single chain statistics in the disordered phase of a flexible diblock copolymer system is shown to deviate from the Gaussian statistics due to fluctuations. In the one loop approximation one shows that the diblock copolymer chain is stretched in the point where two incompatible blocks meet but also that each block shrinks close to the microphase separation transition. The stretching outweights shrinking and the net result is the increase of the radius of gyration above the Gaussian value. Certain properties of homopolymer/copolymer systems are discussed. Diblock copolymers solubilize two incompatible homopolymers by forming a monolayer interface between them. The interface has a positive saddle splay modulus which means that the interfaces in the disordered phase should be characterized by a negative Gaussian curvature. We also show that in such a mixture the Lifshitz tricritical point is encountered. The properties of this unusual point are presented. The Lifshitz, equimaxima and disorder lines are shown to provide a useful tool for studying local ordering in polymer mixtures. In the liquid crystalline mixtures the isotropic nematic phase transition is discussed. We concentrate on static, equilibrium properties of the polymer systems.  相似文献   

20.
We propose a self-consistent molecular theory of conformational properties of flexible polymers in melts and solutions. The method employs the polymer reference interaction site model for the intermolecular correlations and the Green function technique for the intramolecular correlations. We demonstrate this method on n-alkane molecules in different environments: water, hexane, and in melt, corresponding to poor, good, and theta condition, respectively. The numerical results of the intramolecular correlation function, the radius of gyration, and the characteristic ratio of a polymer chain are indicative of conformational changes from one environment to another and are in agreement with other findings in the literature. Scaling laws for the chain size with respect to the number of monomers are discussed. We show results for the intra- and intermolecular correlation functions and the medium-induced potential. We also extract the Kuhn length and the characteristic ratio for the infinite chain limit for melts. The latter is compared to the experimental results and computer simulation. The conformational free energy per monomer in different solvents is calculated. Our treatment can be generalized readily to other polymer-solvent systems, for example, those containing branched copolymers and polar solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号