首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Let \(M\) and \(N\) be two connected smooth manifolds, where \(M\) is compact and oriented and \(N\) is Riemannian. Let \(\mathcal {E}\) be the Fréchet manifold of all embeddings of \(M\) in \(N\) , endowed with the canonical weak Riemannian metric. Let \(\sim \) be the equivalence relation on \(\mathcal {E}\) defined by \(f\sim g\) if and only if \(f=g\circ \phi \) for some orientation preserving diffeomorphism \(\phi \) of \(M\) . The Fréchet manifold \(\mathcal {S}= \mathcal {E}/_{\sim }\) of equivalence classes, which may be thought of as the set of submanifolds of \(N\) diffeomorphic to \(M\) and is called the nonlinear Grassmannian (or Chow manifold) of \(N\) of type \(M\) , inherits from \( \mathcal {E}\) a weak Riemannian structure. We consider the following particular case: \(N\) is a compact irreducible symmetric space and \(M\) is a reflective submanifold of \(N\) (that is, a connected component of the set of fixed points of an involutive isometry of \( N\) ). Let \(\mathcal {C}\) be the set of submanifolds of \(N\) which are congruent to \(M\) . We prove that the natural inclusion of \(\mathcal {C}\) in \(\mathcal {S}\) is totally geodesic.  相似文献   

3.
Let \(\mathrm{R}\) be a real closed field and \(\hbox {D}\subset \mathrm{R}\) an ordered domain. We describe an algorithm that given as input a polynomial \(P \in \hbox {D}[ X_{1} , \ldots ,X_{{ k}} ]\) and a finite set, \(\mathcal {A}= \{ p_{1} , \ldots ,p_{m} \}\) , of points contained in \(V= {\mathrm{{Zer}}} ( P, \mathrm{R}^{{ k}})\) described by real univariate representations, computes a roadmap of \(V\) containing \(\mathcal {A}\) . The complexity of the algorithm, measured by the number of arithmetic operations in \(\hbox {D}\) , is bounded by \(\big ( \sum _{i=1}^{m} D^{O ( \log ^{2} ( k ) )}_{i} +1 \big ) ( k^{\log ( k )} d )^{O ( k\log ^{2} ( k ))}\) , where \(d= \deg ( P )\) and \(D_{i}\) is the degree of the real univariate representation describing the point \(p_{i}\) . The best previous algorithm for this problem had complexity card \(( \mathcal {A} )^{O ( 1 )} d^{O ( k^{3/2} )}\) (Basu et al., ArXiv, 2012), where it is assumed that the degrees of the polynomials appearing in the representations of the points in \(\mathcal {A}\) are bounded by \(d^{O ( k )}\) . As an application of our result we prove that for any real algebraic subset \(V\) of \(\mathbb {R}^{k}\) defined by a polynomial of degree \(d\) , any connected component \(C\) of \(V\) contained in the unit ball, and any two points of \(C\) , there exists a semi-algebraic path connecting them in \(C\) , of length at most \(( k ^{\log (k )} d )^{O ( k\log ( k ) )}\) , consisting of at most \(( k ^{\log (k )} d )^{O ( k\log ( k ) )}\) curve segments of degrees bounded by \(( k ^{\log ( k )} d )^{O ( k \log ( k) )}\) . While it was known previously, by a result of D’Acunto and Kurdyka (Bull Lond Math Soc 38(6):951–965, 2006), that there always exists a path of length \(( O ( d ) )^{k-1}\) connecting two such points, there was no upper bound on the complexity of such a path.  相似文献   

4.
This paper is devoted to the study of the Hausdorff dimension of the singular set of the minimum time function \(T\) under controllability conditions which do not imply the Lipschitz continuity of \(T\) . We consider first the case of normal linear control systems with constant coefficients in \({\mathbb {R}}^N\) . We characterize points around which \(T\) is not Lipschitz as those which can be reached from the origin by an optimal trajectory (of the reversed dynamics) with vanishing minimized Hamiltonian. Linearity permits an explicit representation of such set, that we call \(\mathcal {S}\) . Furthermore, we show that \(\mathcal {S}\) is countably \(\mathcal {H}^{N-1}\) -rectifiable with positive \(\mathcal {H}^{N-1}\) -measure. Second, we consider a class of control-affine planar nonlinear systems satisfying a second order controllability condition: we characterize the set \(\mathcal {S}\) in a neighborhood of the origin in a similar way and prove the \(\mathcal {H}^1\) -rectifiability of \(\mathcal {S}\) and that \(\mathcal {H}^1(\mathcal {S})>0\) . In both cases, \(T\) is known to have epigraph with positive reach, hence to be a locally \(BV\) function (see Colombo et al.: SIAM J Control Optim 44:2285–2299, 2006; Colombo and Nguyen.: Math Control Relat 3: 51–82, 2013). Since the Cantor part of \(DT\) must be concentrated in \(\mathcal {S}\) , our analysis yields that \(T\) is locally \(SBV\) , i.e., the Cantor part of \(DT\) vanishes. Our results imply also that \(T\) is differentiable outside a \(\mathcal {H}^{N-1}\) -rectifiable set. With small changes, our results are valid also in the case of multiple control input.  相似文献   

5.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k such that the indecomposable \(\mathcal{A}\) -modules are determined by their dimension vectors and for each \(M, L \in ind(\mathcal{A})\) and \(N\in mod(\mathcal{A})\) , either \(F^{M}_{N L}=0\) or \(F^{M}_{L N}=0\) . We show that \(\mathcal{A}\) has Hall polynomials and the rational extension of its Ringel–Hall algebra equals the rational extension of its composition algebra. This result extend and unify some known results about Hall polynomials. As a consequence we show that if \(\mathcal{A}\) is a representation finite simply-connected algebra, or finite dimensional k-algebra such that there are no short cycles in \(mod(\mathcal{A})\) , or representation finite cluster tilted algebra, then \(\mathcal{A}\) has Hall polynomials and \(\mathcal{H}(\mathcal{A})\otimes_\mathbb{Z}Q=\mathcal{C}(\mathcal{A})\otimes_\mathbb{Z}Q\) .  相似文献   

6.
Let \(S(n)\) be the category of invariant subspaces of nilpotent operators with nilpotency index at most \(n\) . Such submodule categories have been studied already in 1934 by Birkhoff, they have attracted a lot of attention in recent years, for example in connection with some weighted projective lines (Kussin, Lenzing, Meltzer). On the other hand, we consider the preprojective algebra \(\Pi _n\) of type \(\mathbb {A}_n\) ; the preprojective algebras were introduced by Gelfand and Ponomarev, they are now of great interest, for example they form an important tool to study quantum groups (Lusztig) or cluster algebras (Geiss, Leclerc, Schröer). We are going to discuss the connection between the submodule category \(\mathcal {S}(n)\) and the module category \(\hbox {mod}\;\Pi _{n-1}\) of the preprojective algebra \(\Pi _{n-1}\) . Dense functors \(\mathcal {S}(n) \rightarrow \hbox {mod}\;\Pi _{n-1}\) are known to exist: one has been constructed quite a long time ago by Auslander and Reiten, recently another one by Li and Zhang. We will show that these two functors are full, dense, objective functors with index \(2n\) , thus \(\hbox {mod}\;\Pi _{n-1}\) is obtained from \(\mathcal {S}(n)\) by factoring out an ideal which is generated by \(2n\) indecomposable objects. As a byproduct we also obtain new examples of ideals in triangulated categories, namely ideals \(\mathcal {I}\) in a triangulated category \(\mathcal {T}\) which are generated by an idempotent such that the factor category \(\mathcal {T}/\mathcal {I}\) is an abelian category.  相似文献   

7.
The pinched Veronese poset \({\mathcal {V}}^{\bullet }_n\) is the poset with ground set consisting of all nonnegative integer vectors of length \(n\) such that the sum of their coordinates is divisible by \(n\) with exception of the vector \((1,\ldots ,1)\) . For two vectors \(\mathbf {a}\) and \(\mathbf {b}\) in \({\mathcal {V}}^{\bullet }_n\) , we have \(\mathbf {a}\preceq \mathbf {b}\) if and only if \(\mathbf {b}- \mathbf {a}\) belongs to the ground set of \({\mathcal {V}}^{\bullet }_n\) . We show that every interval in \({\mathcal {V}}^{\bullet }_n\) is shellable for \(n \ge 4\) . In order to obtain the result, we develop a new method for showing that a poset is shellable. This method differs from classical lexicographic shellability. Shellability of intervals in \({\mathcal {V}}^{\bullet }_n\) has consequences in commutative algebra. As a corollary, we obtain a combinatorial proof of the fact that the pinched Veronese ring is Koszul for \(n \ge 4\) . (This also follows from a result by Conca, Herzog, Trung, and Valla.)  相似文献   

8.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

9.
In this paper we consider functions \(f\) defined on an open set \(U\) of the Euclidean space \(\mathbb{R }^{n+1}\) and with values in the Clifford Algebra \(\mathbb{R }_n\) . Slice monogenic functions \(f: U \subseteq \mathbb{R }^{n+1} \rightarrow \mathbb{R }_n\) belong to the kernel of the global differential operator with non constant coefficients given by \( \mathcal{G }=|{\underline{x}}|^2\frac{\partial }{\partial x_0} \ + \ {\underline{x}} \ \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}. \) Since the operator \(\mathcal{G }\) is not elliptic and there is a degeneracy in \( {\underline{x}}=0\) , its kernel contains also less smooth functions that have to be interpreted as distributions. We study the distributional solutions of the differential equation \(\mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) and some of its variations. In particular, we focus our attention on the solutions of the differential equation \( ({\underline{x}}\frac{\partial }{\partial x_0} \ - E)F(x_0,{\underline{x}})=G(x_0,{\underline{x}}), \) where \(E= \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}\) is the Euler operator, from which we deduce properties of the solutions of the equation \( \mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) .  相似文献   

10.
Let \(B\) be an \(n\times n\) real expanding matrix and \(\mathcal {D}\) be a finite subset of \(\mathbb {R}^n\) with \(0\in \mathcal {D}\) . The self-affine set \(K=K(B,\mathcal {D})\) is the unique compact set satisfying the set-valued equation \(BK=\bigcup _{d\in \mathcal {D}}(K+d)\) . In the case where \(\#\mathcal D=|\det B|,\) we relate the Lebesgue measure of \(K(B,\mathcal {D})\) to the upper Beurling density of the associated measure \(\mu =\lim _{s\rightarrow \infty }\sum _{\ell _0, \ldots ,\ell _{s-1}\in \mathcal {D}}\delta _{\ell _0+B\ell _1+\cdots +B^{s-1}\ell _{s-1}}.\) If, on the other hand, \(\#\mathcal D<|\det B|\) and \(B\) is a similarity matrix, we relate the Hausdorff measure \(\mathcal {H}^s(K)\) , where \(s\) is the similarity dimension of \(K\) , to a corresponding notion of upper density for the measure \(\mu \) .  相似文献   

11.
For three coadjoint orbits \(\mathcal {O}_1, \mathcal {O}_2\) and \(\mathcal {O}_3\) in \(\mathfrak {g}^*\) , the Corwin–Greenleaf function \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) is given by the number of \(G\) -orbits in \(\{(\lambda , \mu ) \in \mathcal {O}_1 \times \mathcal {O}_2 \, : \, \lambda + \mu \in \mathcal {O}_3 \}\) under the diagonal action. In the case where \(G\) is a simple Lie group of Hermitian type, we give an explicit formula of \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) for coadjoint orbits \(\mathcal {O}_1\) and \(\mathcal {O}_2\) that meet \(\left( [\mathfrak {k}, \mathfrak {k}] + \mathfrak {p}\right) ^{\perp }\) , and show that the formula is regarded as the ‘classical limit’ of a special case of Kobayashi’s multiplicity-free theorem (Progr. Math. 2007) in the branching law to symmetric pairs.  相似文献   

12.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

13.
An operator \(T\) on a complex Hilbert space \(\mathcal {H}\) is called skew symmetric if \(T\) can be represented as a skew symmetric matrix relative to some orthonormal basis for \(\mathcal {H}\) . In this paper, we study the approximation of skew symmetric operators and provide a \(C^*\) -algebra approach to skew symmetric operators. We classify up to approximate unitary equivalence those skew symmetric operators \(T\in \mathcal {B(H)}\) satisfying \(C^*(T)\cap \mathcal {K(H)}=\{0\}\) . This is used to characterize when a unilateral weighted shift with nonzero weights is approximately unitarily equivalent to a skew symmetric operator.  相似文献   

14.
We present the new semicontinuity theorem for automorphism groups: If a sequence \(\{\Omega _j\}\) of bounded pseudoconvex domains in \(\mathbb C^2\) converges to \(\Omega _0\) in \({\mathcal C}^\infty \) -topology, where \(\Omega _0\) is a bounded pseudoconvex domain in \(\mathbb C^2\) with its boundary \({\mathcal C}^\infty \) and of the D’Angelo finite type and with \(\text {Aut}\,(\Omega _0)\) compact, then there is an integer \(N>0\) such that, for every \(j > N\) , there exists an injective Lie group homomorphism \(\psi _j:\text {Aut}\,(\Omega _j) \rightarrow \text {Aut}\,(\Omega _0)\) . The method of our proof of this theorem is new that it simplifies the proof of the earlier semicontinuity theorems for bounded strongly pseudoconvex domains.  相似文献   

15.
Let \(\mathfrak {g}\) be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \(\mathfrak {h}\) and the Weyl group \(W\) . Let \(P_+\) be the set of dominant integral weights. For \(\lambda \in P_+\) , let \(L(\lambda )\) be the integrable, highest weight (irreducible) representation of \(\mathfrak {g}\) with highest weight \(\lambda \) . For a positive integer \(s\) , define the saturated tensor semigroup as $$\begin{aligned} \Gamma _s:= \{(\lambda _1, \dots , \lambda _s,\mu )\in P_+^{s+1}: \exists \, N\ge 1 \,\text {with}\,L(N\mu )\subset L(N\lambda _1)\otimes \dots \otimes L(N\lambda _s)\}. \end{aligned}$$ The aim of this paper is to begin a systematic study of \(\Gamma _s\) in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by \(\Gamma _s\) . These inequalities are indexed by products in \(H^*(G^{\mathrm{min }}/B; \mathbb {Z})\) for \(B\) the standard Borel subgroup, where \(G^{\mathrm{min }}\) is the ‘minimal’ Kac-Moody group with Lie algebra \(\mathfrak {g}\) . The proof relies on the Kac-Moody analogue of the Borel-Weil theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index). In the case that \(\mathfrak {g}\) is affine of rank 2, we show that these inequalities are necessary and sufficient. We further prove that any integer \(d>0\) is a saturation factor for \(A^{(1)}_1\) and 4 is a saturation factor for \(A^{(2)}_2\) .  相似文献   

16.
It is a classical fact that the cotangent bundle \(T^* {\mathcal {M}}\) of a differentiable manifold \({\mathcal {M}}\) enjoys a canonical symplectic form \(\Omega ^*\) . If \(({\mathcal {M}},\mathrm{J} ,g,\omega )\) is a pseudo-Kähler or para-Kähler \(2n\) -dimensional manifold, we prove that the tangent bundle \(T{\mathcal {M}}\) also enjoys a natural pseudo-Kähler or para-Kähler structure \(({\tilde{\hbox {J}}},\tilde{g},\Omega )\) , where \(\Omega \) is the pull-back by \(g\) of \(\Omega ^*\) and \(\tilde{g}\) is a pseudo-Riemannian metric with neutral signature \((2n,2n)\) . We investigate the curvature properties of the pair \(({\tilde{\hbox {J}}},\tilde{g})\) and prove that: \(\tilde{g}\) is scalar-flat, is not Einstein unless \(g\) is flat, has nonpositive (resp. nonnegative) Ricci curvature if and only if \(g\) has nonpositive (resp. nonnegative) Ricci curvature as well, and is locally conformally flat if and only if \(n=1\) and \(g\) has constant curvature, or \(n>2\) and \(g\) is flat. We also check that (i) the holomorphic sectional curvature of \(({\tilde{\hbox {J}}},\tilde{g})\) is not constant unless \(g\) is flat, and (ii) in \(n=1\) case, that \(\tilde{g}\) is never anti-self-dual, unless conformally flat.  相似文献   

17.
18.
19.
For a domain \(\varOmega \) in \(\mathbb {C}\) and an operator \(T\) in \({\mathcal {B}}_n(\varOmega )\) , Cowen and Douglas construct a Hermitian holomorphic vector bundle \(E_T\) over \(\varOmega \) corresponding to \(T\) . The Hermitian holomorphic vector bundle \(E_T\) is obtained as a pull-back of the tautological bundle \(S(n,{\mathcal {H}})\) defined over \({\mathcal {G}}r(n,{\mathcal {H}})\) by a nondegenerate holomorphic map \(z\mapsto {\mathrm{ker}}(T-z),\;z\in \varOmega \) . To find the answer to the converse, Cowen and Douglas studied the jet bundle in their foundational paper. The computations in this paper for the curvature of the jet bundle are rather intricate. They have given a set of invariants to determine if two rank \(n\) Hermitian holomorphic vector bundle are equivalent. These invariants are complicated and not easy to compute. It is natural to expect that the equivalence of Hermitian holomorphic jet bundles should be easier to characterize. In fact, in the case of the Hermitian holomorphic jet bundle \({\mathcal {J}}_k({\mathcal {L}}_f)\) , we have shown that the curvature of the line bundle \({\mathcal {L}}_f\) completely determines the class of \({\mathcal {J}}_k({\mathcal {L}}_f)\) . In case of rank \(n\) Hermitian holomorphic vector bundle \(E_f\) , We have calculated the curvature of jet bundle \({\mathcal {J}}_k(E_f)\) and also obtained a trace formula for jet bundle \({\mathcal {J}}_k(E_f)\) .  相似文献   

20.
We consider (Frobenius) difference equations over \((\mathbb {F}\!_q(s,t), \phi _q)\) where \(\phi _q\) fixes \(t\) and acts on \(\mathbb {F}\!_q(s)\) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group \(\mathcal {G}\) defined over \(\mathbb {F}\!_q\) can be realized as a difference Galois group over \((\mathbb {F} \! _{q^i} (s,t),\phi _{q^i})\) for some \(i \in \mathbb {N}\) . The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori’s theorem which states that \(\mathcal {G}(\mathbb {F}\!_q)\) occurs as a (finite) Galois group over \(\mathbb {F}\!_q(s)\) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号