首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Three novel hetero[3]rotaxanes, which comprise one neutral tetraamide cyclophane, one tetracationic cyclophane, and one linear component, have been assembled by utilizing hydrogen-bonding and donor-acceptor interactions, through three neutral [2]rotaxanes as intermediates. Three tetracationic [2]rotaxanes are also prepared for property comparison. For all three linear components, diamide subunits, the hydrogen-bonding templating moieties, are introduced at the center of the molecules, while the electron-rich hydrogquinone subunits, the donor-acceptor interaction templates, are incorporated between the diamides and the triphenylmethyl stoppers. Compared with the reported [3]rotaxanes, the novel hetero[3]rotaxanes exhibit remarkably intensified spatial interaction between the two ring components, which had been proved by (1)H NMR and UV study. For the first time, inter-ring NOEs are observed for interlocked [3]rotaxanes.  相似文献   

2.
One linear template 13 and one cyclophane template 15, both incorporating two electron rich 1,4‐dialkoxybenzene units and one diamide unit, have been synthesized. By utilizing donor‐acceptor interaction and/or intermolecular hydrogen bonding assembling principles, one novel hetero[3]rotazane 22·4Cl, possessing one neutral and one tetracationic ring components, has been synthesized from 13, through neutral [2]rotaxane 21 as intermediate. With 15 as template, tetracationic [2]catenane 23·4PF6 was assembled by using donor‐acceptor interaction, but no neutral [2]rotaxane could be obtained under the typical conditions of hydrogen bonding assembling principle. The interlocked supramolecular compounds have been characterized and their spectral properties are investigated.  相似文献   

3.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

4.
With the fabrication of molecular electronic devices (MEDs) and the construction of nanoelectromechanical systems (NEMSs) as incentives, two constitutionally isomeric, redox-controllable [2]rotaxanes have been synthesized and characterized in solution. Therein, they both behave as near-perfect molecular switches, that is, to all intents and purposes, these two rotaxanes can be switched precisely by applying appropriate redox stimuli between two distinct chemomechanical states. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by i) two pi-electron rich recognition sites-a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) moiety-with ii) a rigid terphenylene spacer placed between the two recognition sites, and then terminated by iii) a hydrophobic tetraarylmethane stopper at one end and a hydrophilic dendritic stopper at the other end of the dumbbells, thus conferring amphiphilicity upon these molecules. A template-directed protocol produces a means to introduce the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), which contains two pi-electron accepting bipyridinium units, mechanically interlocked around the dumbbell-shaped components. Both the TTF unit and the DNP moiety are potential stations for CBPQT(4+), since they can establish charge-transfer and hydrogen bonding interactions with the bipyridinium units of the cyclophane, thereby introducing bistability into the [2]rotaxanes. In both constitutional isomers, (1)H NMR and absorption spectroscopies, together with electrochemical investigations, reveal that the CBPQT(4+) ring is predominantly located on the TTF unit, leading to the existence of a single translational isomer (co-conformation) in both cases. In addition, a model [2]rotaxane, incorporating hydrophobic tetraarylmethane stoppers at both ends of its dumbbell-shaped component, has also been synthesized as a point of reference. Molecular synthetic approaches were used to construct convergently the dumbbell-shaped compounds by assembling progressively smaller building blocks in the shape of the rigid spacer, the TTF unit and the DNP moiety, and the hydrophobic and hydrophilic stoppers. The two amphiphilic bistable [2]rotaxanes are constitutional isomers in the sense that, in one constitution, the TTF unit is adjacent to the hydrophobic stopper, whereas in the other, it is next to the hydrophilic stopper. All three bistable [2]rotaxanes have been isolated as green solids. Electrospray and fast atom bombardment mass spectra support the gross structural assignments given to all three of these mechanically interlocked compounds. Their photophysical and electrochemical properties have been investigated in acetonitrile. The results obtained from these investigations confirm that, in all three [2]rotaxanes, i) the CBPQT(4+) cyclophane encircles the TTF unit, ii) the CBPQT(4+) cyclophane shuttles between the TTF and DNP stations upon electrochemical or chemical oxidation/reduction of the TTF unit, and iii) folded conformations are present in which the CBPQT(4+) cyclophane, while encircling the TTF unit, interacts through its pi-accepting bipyridinium exteriors with other pi-donating components of the dumbbells, especially those located within the stoppers.  相似文献   

5.
A synthetic approach to the preparation of [2]rotaxanes (1-5·6PF(6)) incorporating bispyridinium derivatives and two 1,5-dioxynaphthalene (DNP) units situated in the rod portions of their dumbbell components that are encircled by a single cyclobis(paraquat-p-phenylene) tetracationic (CBPQT(4+)) ring has been developed. Since the π-electron-deficient bispyridinium units are introduced into the dumbbell components of the [2]rotaxanes 1-5·6PF(6), there are Coulombic charge-charge repulsions between these dicationic units and the CBPQT(4+) ring in the [2]rotaxanes. Thus, the CBPQT(4+) rings in the degenerate [2]rotaxanes exhibit slow shuttling between two DNP recognition sites on the (1)H NMR time-scale on account of the electrostatic barrier posed by the bispyridinium units, as demonstrated by variable-temperature (1)H NMR spectroscopy. Electrochemical experiments carried out on the [2]rotaxanes 1·6PF(6) and 2·6PF(6) indicate that the one-electron reduced bipyridinium radical cation in the dumbbell components of the [2]rotaxanes serves as an additional recognition site for the two-electron reduced CBPQT(2(˙+)) diradical cationic ring. Under appropriate conditions, the ring components in the degenerate rotaxanes 1·6PF(6) and 2·6PF(6) can shuttle along the recognition sites--two DNP units and one-electron reduced bipyridinium radical cation--under redox control.  相似文献   

6.
The concept of using [2]rotaxanes that carry one or more surrogate stoppers which can subsequently be converted chemically into other structural units, resulting in the formation of new interlocked molecular compounds, is introduced and exemplified. Starting from simple NH2(+)-centered/crown-ether-based [2]rotaxanes, containing either one or two benzylic triphenylphosphonium stoppers, the well-known Wittig reaction has been employed to make, 1) other [2]rotaxanes, 2) higher order rotaxanes, 3) branched rotaxanes, and 4) molecular shuttles--all isolated as pure compounds, following catalytic hydrogenations of their carbon-carbon double bonds, obtained when aromatic aldehydes react with the ylides produced when the benzylic triphenylphosphonium derivatives are treated with strong base. The two starting [2]rotaxanes were characterized fully in solution and also in the solid state by X-ray crystallography. The new interlocked molecular compounds that result from carrying out post-assembly Wittig reactions on two [2]rotaxanes were characterized by (dynamic) 1H NMR spectroscopy. In the case of a molecular shuttle in which the crown ether component is dibenzo[24]-crown-8 (DB24C8), shuttling is slow on the 1H NMR timescale, even at high temperatures. However, when DB24C8 is replaced by benzometaphenylene[25]-crown-8 as the ring component in the molecular shuttle, the frequency of the shuttling is observed to be around 100 Hz in [D4]methanol at 63 degrees C.  相似文献   

7.
A series of amphiphilic bistable [2]rotaxanes--in which a ring-shaped component, the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), has been assembled around two recognition sites, a tetrathia-fulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) ring system, situated apart at different strategic locations within the central polyether section of an amphiphilic dumbbell component that is terminated by a hydrophobic tetraarylmethane-based stopper (near the TTF unit) at one end and by a hydrophilic tetraarylmethane-based stopper (near the DNP ring system) at the other end--has been designed and synthesized. The effects of systematic changes in the constitutions of the three ethylene glycol tails (diethylene or tetraethylene glycol) and end groups (hydroxyl or methoxyl functions) attached to the hydrophilic stoppers on Langmuir film balance and surface rheology experiments at 20 degreesC were examined to determine the monolayer stabilities and co-conformations of the [2] rotaxanes and their free dumbbell counterparts. These experiments allow us to propose a model for the rotaxane's structures at different surface pressures. All the [2]rotaxanes form stable Langmuir films. These films typically pass from a liquid-expanded region to a liquid-condensed region. The transition between the two regions was either directly observed or ascertained using film stability experiments. Film balance and surface rheology experiments showed that the addition of the tetracationic cyclophane component and hydroxyl end groups markedly increased the stabilities and viscoelasticity of the films.  相似文献   

8.
The threading of an alpha-cyclodextrin (alpha-CyD) by an unsymmetrical dumbbell generally results in two isomeric [2]rotaxanes differing in the orientation of the alpha-CyD. In this work, two methods have been developed for the unidirectionally threading an alpha-CyD to obtain isomer-free [2]rotaxanes. These methods use the Suzuki coupling of a boronic acid derivative and a halide in aqueous alkaline solution. The conformations of the two unidirectional [2]rotaxanes-R3 and R4 were determined by 2D 1H ROESY NMR spectra. The optical spectral studies revealed that each of the two [2]rotaxanes can proceed with E/Z photoisomerization and shuttling motions of the alpha-CyD ring on the thread under alternating irradiation at 330 and 275 nm, accompanied by fluorescence intensity changes at 530 nm. The induced circular dichroism (ICD) spectra of another two analogous [2]rotaxanes R1 and R2 were also studied. Distinctive ICD signal changes resulting from the photoisomerization with respect to the movements of alpha-CyD were detected. This demonstrates that, besides the fluorescence, ICD signal is another way to identify the shuttling motions of alpha-CyD in these [2]rotaxanes.  相似文献   

9.
Two [2]catenanes incorporating bispyrrolotetrathiafulvalene (BPTTF) and weaker aryl donors, hydroquinone (HQ) and 1,5-dioxynaphthalene (DNP), respectively, have been prepared and characterized. These [2]catenanes show a predominant amount (>95:5) of the co-conformation in which either the HQ or the DNP unit is encircled by a tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+), contrary to what is observed in systems based on the parent tetrathiafulvalene (TTF). These new [2]catenanes act effectively as molecular switches which are always configured in the "on" state.  相似文献   

10.
Two molecular shuttles/switches—a slow one and a fast one—in the shape of amphiphilic, bistable [2]rotaxanes have been synthesized and characterized. Both [2]rotaxanes contain a hydrophobic, tetraarylmethane and a hydrophilic, dendritic stopper. They are comprised of two π‐electron‐rich stations—a monopyrrolotetrathiafulvalene unit and a 1,5‐dioxynaphthalene moiety—which can act as recognition sites for the tetracationic cyclophane, cyclobis(paraquat‐p‐phenylene), to reside around. In addition, a model [2]rotaxane, incorporating only a monopyrrolotetrathiafulvalene unit in the rod section of the amphiphilic dumbbell component and cyclobis(paraquat‐p‐phenylene) as the ring component, has been investigated. The dumbbell‐shaped components were constructed using conventional synthetic methodologies to assemble 1) the hydrophobic, tetraarylmethane stopper and 2) the hydrophilic, dendritic stopper. Next, 3) the hydrophobic stopper was fused to the 1,5‐dioxynaphthalene moiety and/or the monopyrrolotetrathiafulvalene unit by appropriate alkylations, followed by 4) attachment of the hydrophilic stopper, once again by alkylation to give the dumbbell‐shaped compounds. Finally, 5) the [2]rotaxanes were self‐assembled by using the dumbbells as templates for the formation of the encircling cyclobis(paraquat‐p‐phenylene) tetracations. The two [2]rotaxanes differ in their arrangement of the π‐electron‐rich units, one in which the SMe group of the monopyrrolotetrathiafulvalene unit points toward the 1,5‐dioxynaphthalene moiety ( 2 ?4 PF6) and another in which it points away from the 1,5‐dioxynaphthalene moiety ( 3 ?4 PF6). This seemingly small difference in the orientation of the monopyrrolotetrathiafulvalene unit leads to profound changes in the physical properties of these rotaxanes. The bistable [2]rotaxanes were both isolated as brown solids. 1H NMR and UV‐visible spectroscopy, and electrochemical investigations, reveal the presence of both possible translational isomers at ambient temperature. As a consequence of the existence of both possible translational isomers in these bistable [2]rotaxanes, they exhibit a complex electrochemical behavior, which is further complicated by the presence of folded conformations wherein the monopyrrolotetrathiafulvalene unit is involved in an “alongside” interaction with the tetracationic cyclophane. In the molecular shuttle/switch 2 ?4 PF6 a “knob”, in the shape of the SMe group, is situated between the monopyrrolotetrathiafulvalene and the 1,5‐dioxynaphthalene recognition sites, making it possible to isolate both translational isomers ( 2 ?4 PF6?GREEN and 2 ?4 PF6?RED) and to investigate the kinetics of the shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation between the two recognition sites. The shuttling processes, which are accompanied by clearly detectable color changes, can be followed by 1H NMR and UV‐visible spectroscopy, allowing the rate constants and energies of activation for the translation of the cyclobis(paraquat‐p‐phenylene) tetracations between the two recognition sites to be determined. In the molecular shuttle/switch 3 ?4 PF6, there is no “knob” situated between the 1,5‐dioxynaphthalene and the monopyrrolotetrathiafulvalene recognition sites, resulting in a considerably faster shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation between these two sites, making the separation of the two possible translational isomers of 3 ?4 PF6 impractical. However, the shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation can be followed by dynamic 1H NMR spectroscopy. At low temperatures, the major translational isomer is 3 ?4 PF6?RED, while 3 ?4 PF6?GREEN is the major isomer at higher temperature. In the bistable [2]rotaxanes shuttling of the cyclobis(paraquat‐p‐phenylene) tetracations can be driven by electrochemical oxidation of the monopyrrolotetrathiafulvalene unit. In complexes in which one of the two dumbbell stoppers is missing, electrochemical oxidation causes dethreading.  相似文献   

11.
Rotacatenanes are exotic molecular compounds that can be visualized as a unique combination of a [2]catenane and a [2]rotaxane, thereby combining both the circumrotation of the ring component (rotary motion) and the shuttling of the dumbbell component (translational motion) in one structure. Herein, we describe a strategy for the synthesis of a new switchable [3]rotacatenane and the investigation of its switching properties, which rely on the formation of tetrathiafulvalene (TTF) radical π-dimer interactions-namely, the mixed-valence state (TTF(2) )(+.) and the radical-cation dimer state (TTF(+.) )(2) -under ambient conditions. A template-directed approach, based on donor-acceptor interactions, has been developed, resulting in an improved yield of the key precursor [2]catenane, prior to rotacatenation. The nature of the binding between the [2]catenane and selected π-electron-rich templates has been elucidated by using X-ray crystallography and UV/Vis spectroscopy as well as isothermal titration microcalorimetry. The multistate switching mechanism of the [3]rotacatenane has been demonstrated by cyclic voltammetry and EPR spectroscopy. Most notably, the radical-cation dimer state (TTF(+.) )(2) has been shown to enter into an equilibrium by forming the co-conformation in which the two 1,5-dioxynaphthalene (DNP) units co-occupy the cavity of tetracationic cyclophane, thus enforcing the separation of TTF radical-cation dimer (TTF(+.) )(2) . The population ratio of this equilibrium state was found to be 1:1. We believe that this research demonstrates the power of constructing complex molecular machines using template-directed protocols, enabling us to make the transition from simple molecular switches to their multistate variants for enhancing information storage in molecular electronic devices.  相似文献   

12.
Surface sensitive X-ray techniques have been used to elucidate the structures of amphiphilic [2]rotaxane and dumbbell monolayers at the air/water interface. The [2]rotaxanes were found to adopt highly hydrated tilted and/or folded conformations on the water surface largely due to the hydrophilic nature of their tetracationic ring component. This conformation was less pronounced in monolayers of the dumbbell precursors. Increasing the surface pressure resulted in an expansion of [2]rotaxane monolayers in the vertical direction and decreased hydration.  相似文献   

13.
[reaction: see text] The redox potentials of a highly constrained [2]rotaxane have been measured and used to model the energy of the HOMO of tetrathiafulvalene-based bistable [2]rotaxanes in their two co-conformationally isomeric states. Restrained from co-conformational movements, the measured oxidation and reduction potentials provide insights into the orbital energies and electronic structure of a (monopyrrolo)tetrathiafulvalene unit when encircled by a tetracationic cyclobis(paraquat-p-phenylene) ring.  相似文献   

14.
Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by (i) two pi-electron-rich stations-two NP moieties or a MPTTF unit and a NP moiety-with (ii) a rigid arylethynyl or butadiynyl spacer situated between the two stations and terminated by (iii) flexibly tethered hydrophobic stoppers at each end of the dumbbells. This modification was investigated as a means to simplify both molecular structure and switching function previously observed in related bistable [2]rotaxanes with flexible spacers between their stations and incorporating a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring. The nondegenerate MPTTF-NP switch was isolated as near isomer-free bistable [2]rotaxane. Utilization of MPTTF removes the cis/trans isomerization that characterizes the tetrathiafulvalene (TTF) parent core structure. Furthermore, only one translational isomer is observed (> 95 < 5), surprisingly across a wide temperature range (198-323 K), meaning that the CBPQT4+ ring component resides, to all intents and purposes, predominantly on the MPTTF unit in the ground state. As a consequence of these two effects, the assignment of NMR and UV-vis data is more simplified as compared to previous donor-acceptor bistable [2]rotaxanes. This development has not only allowed for much better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from these measurements that the rigid spacer poses a much lower barrier to the 1.0 nm movement of the CBPQT4+ ring from one station to another as compared with previous systems-a finding that is thought to be a result of the combination of fewer favorable interactions between the spacer and the CBPQT4+ ring and a relatively unimpeded path between the two NP stations. This example augers well for exploiting rigidity during the development of well-defined bistable [2]rotaxanes, which are unencumbered by the excesses of structural conformations that have characterized the first generations of molecular switches based on the donor-acceptor recognition motif.  相似文献   

15.
Novel [2]rotaxanes containing the tetracationic cyclophane cyclobis(paraquat-4,4-biphenylene) and a dumbbell-shaped molecular thread incorporating a photoactive diarylcycloheptatriene station as well as a photoinactive anisol station have been synthesized with yields of nearly 50 % by the alkylative endcapping method. The rotaxane was transformed into the related rotaxane incorporating a diaryl tropylium unit by electrochemical oxidation. The precursor of the cycloheptatrienyl rotaxane, the related pseudorotaxane, and the rotaxanes incorporating the diarylcycloheptatriene and the corresponding tropylium unit were characterized by (1)HNMR spectroscopy and UV/Vis spectroscopy. According to the NMR spectra, both the cycloheptatriene and the tropylium rotaxane possess a folded conformation enabling the tetracationic cyclophane to interact with two stations. The diarylcycloheptatriene station is incorporated inside the cavity of the cyclophane and the anisol station resides alongside the bipyridinium unit of the cyclophane. In contrast, the anisol station is inside the cyclophane in the tropylium rotaxane. The exchange between both conformations can be achieved by introducing the methoxy leaving group into the cycloheptatriene ring; the tropylium rotaxane is generated by photoheterolysis of this methoxy-substituted rotaxane, which reacts thermally back to the cycloheptatriene rotaxane, thus closing the switching cycle. These induced conformational changes achieve a so-called molecular machine.  相似文献   

16.
The synthesis of a functionally rigid [2]rotaxane incorporating pi-electron rich 1,5-disubstituted naphthalene (NP) ring systems, encircled by the pi-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene), is described; in the solid state, the molecules of this donor-acceptor [2]rotaxane line themselves up in parallel pi-pi stacks of alternating NP ring systems and bipyridinium units, affording an interdigitated superstructure.  相似文献   

17.
Host-[2]rotaxanes, containing a diarginine-derivatized dibenzo-24-crown-8 (DB24C8) ether as the ring and a cyclophane pocket or an aromatic cleft as one blocking group, are cell transport agents. These hosts strongly associate with a variety of amino acids, dipeptides, and fluorophores in water (1 mM phosphate buffer, pH 7.0), DMSO, and a 75/25 (v/v) buffer to DMSO solution. All peptidic guests in all solvent systems have association constants (K(A)'s) in the range of 1 x 10(4) to 5 x 10(4) M(-)(1), whereas the K(A) range for the fluorophores is 1 x 10(4) to 9 x 10(5) M(-)(1). Association constants for the cyclophane itself, cyclophane 3, are smaller. These values are in the 1 x 10(3) to 5 x 10(3) M(-)(1) range, which shows that the rotaxane architecture is advantageous for guest binding. Cyclophane-[2]rotaxane 1 efficiently transports fluorescein and a fluorescein-protein kinase C (PKC) inhibitor into eukaryotic COS-7 cells, including the nucleus. Interestingly, cleft-[2]rotaxane 2 does not transport fluorescein as efficiently, even though the results from the fluorescence assays show that both [2]rotaxanes bind fluorescein with the same ability.  相似文献   

18.
New [2]- and [3]pseudorotaxanes containing alpha-cyclodextrin (alpha-CDs) molecules as rotors and alkyl pyridinium derivatives as axles were prepared by a slipping process. The inclusion behavior of these rotaxanes was investigated by using one- and two-dimensional NMR spectroscopy. The methyl group at the 2-position of the pyridinium moiety at the end of each axle molecule was found to control the rates of threading of the alpha-CD onto the axle molecules. alpha-CD can approach axle molecules from a particular direction to form inclusion complexes. Axle molecules that contain a 2-methylpyridinium moiety at one end and a bulky stopper at the other end can regulate the direction of approach to give a [2]pseudorotaxane such as 2 b-alpha-CD. A [3]pseudorotaxane in which two alpha-CD molecules are arranged facing in the same direction at two stations of the tetracationic axle molecule was also obtained. These face-selective behaviors are dominated by kinetic processes rather than thermodynamic processes.  相似文献   

19.
A [2]catenane, which incorporates hydroquinone (HQ) and a sterically bulky tetrathiafulvalene (TTF) into a bismacrocycle, has been designed to probe the alongside charge-transfer (CT) interactions taking place between a TTF unit and one of the bipyridinium moieties in the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+). A template-directed strategy employs the HQ unit as the primary template for formation of the tetracationic cyclophane CBPQT4+, affording the desired [2]catenane structure but as an uncharacteristic green solid. The X-ray crystal structure and detailed 13C NMR assignments have identified a stereoselective preference for catenation about the cis isomer. The 1H NMR spectroscopy, electrochemistry, and X-ray crystallography all confirm that the CBPQT4+ cyclophane encircles the HQ unit, thereby defining a structure which would normally determine a red color. The visible-NIR region of the absorption spectrum displays a band at approximately 740 nm that is unambiguously assigned to a TTF --> CBPQT4+ CT transition on the basis of resonance Raman spectroscopy using 785 nm excitation. The profile of the CT band changes depending on the ratio of the cis- to trans-TTF isomers in the [2]catenane for which the molar absorptivity of each isomer is estimated to be significantly different at epsilon max = 380 and 3690 M-1 cm-1, respectively. Molecular modeling studies confirmed that the observed difference in the absorption spectroscopic profile can be accounted for by both a better overlap of the HOMO(TTF) and LUMO+1(CBPQT4+) as well as a more stable face-to-face (pi...pi) conformation in the trans isomer compared to the edge-to-face cis isomer of the [2]catenane. The latter is arranged for pi-orbital overlap through the sulfur atoms of the TTF unit, thereby defining an [Spi...pi] interaction.  相似文献   

20.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号