首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ab initio LCAO-MO-SCF calculation was made on the proton affinity (PA ) of methylsilane (CH3SiH3) by using STO -3G, MIDI -1, and MIDI -1* basis sets. Three types of protonated methylsilane are taken into account, and their geometrical parameters are optimized. The calculated PA of CH3SiH3 is 160.5 kcal/mol, which exceeds that of SiH4 by 11.5 kcal/mol. The protonated species (I) which refers to Si—C bond protonation is shown to be most favorable, and to be a weak σ-complex between CH4 and SiH. Other two species are also σ-complexes between H2 molecule and SiH3CH or CH3SiH, and similar to CH, SiH, GeH, and C2H.  相似文献   

2.
Multiconfiguration (MC ) SCF calculations are reported for CO2 for bond angles between 60° and 180°. The ground state configuration is found to be …?5a4bba for small bending angles and …?6a3bba for large bending angles, the change in ground state character occurring at a bond angle of about 100°. The force constant for bending obtained from the MC –SCF function is about 8.0% lower than the corresponding SCF value, and in considerably better agreement with experiment.  相似文献   

3.
4.
A simplified analysis is presented for the evaluation of the three‐electron one‐center integrals of the form ∫rrrrrred r 1d r 2d r 3, for the cases i, j, k, ≥−2, l=−2, m≥−1, n≥−1. These integrals arise in the calculation of lower bounds for energy levels and certain relativistic corrections to the energy when Hylleraas‐type basis sets are employed. Convergence accelerator techniques are employed to obtain a reasonable number of digits of precision, without excessive CPU requirements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 93–99, 1999  相似文献   

5.
Silicon analogs of aromatic monocyclic ions, (SiH) ( 4 ), (SiH) ( 5 ), and (SiH) ( 6 ) have been studied ab initio at MP 2(full)/6-31G *. The D3h structure of Si3H3+ is the global minimum, whereas other two ions are nonplanar. The D2d structure of (SiH) is less folded than the carbon analog and possesses a higher stabilization energy. Stabilization energies for the monocharged ions are diminished with respect to the corresponding carbons © 1993 John Wiley & Sons, Inc.  相似文献   

6.
We have calculated certain dynamic polarizabilities (for both real and imaginary frequencies) for H, He, and H2 and the dispersion-energy coefficients for long-range interactions between them. We have done so in a sum-over-states formalism with explicitly electron-correlated wave functions to describe the states. To be precise, we have determined the dipole (α1), quadrupole (α2), and octupole (α3) polarizabilities of H and He for real frequencies (ω) in a range between zero and the first electronic-transition frequency and for imaginary frequencies (iω) on a 32-point Gauss-Legendre grid running from zero to ?ω = 20 Eh, and for H2, we have found the dipole (α), quadrupole (C), and dipole–octupole (E) polarizability tensors for the same real and imaginary frequencies. The dispersion-energy coefficients, obtained by combining the sum-over-states for-malism for the polarizabilities with analytic integration over ω, gave values of C6, C8, and C10 for the atom–atom systems; C, C, C, C, and C for the atom–diatom systems; and C6, C and C for the H2? H2 system. Nearly all the results are considered to be more reliable than those hitherto published and some have been obtained for the first time, e.g., C(iω), E(ω), and E(iω) for H2 and C, C, and C for the H? H2 system. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
In this paper, the efficient evaluation of the atomic integrals I =∫rrrrrrer1?βr2?γr3dτ with one or two factors r is described. These integrals are necessary for a lower-bound calculation for Li-like systems using the method of variance minimization or Temple's formula. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Nonempirical molecular orbital calculations of the energies of CH3CH (ethylcarbonium ion) and HOCH (hydroxymethylcarbonium ion) as a function of rotation about the C? C or C? O bonds and deviation from coplanarity at the carbonium ion center are reported. As expected, and in agreement with previous work, both carbonium centers are planar and there is no barrier to rotation in the planar ethylcarbonium ion. However, for the planar configuration at carbon, the conjugative interaction between oxygen and carbon produces a barrier to rotation about the C? O bond of HOCH of 19.6 Kcal/mole. When a pyramidal geometry is imposed upon the carbonium ion center of CH3CH, a typical three-fold barrier results. As the deviation from coplanarity increases there is a regular increase in the barrier height (1.72 Kcal/mole at the tetrahedral geometry), but the energy minimum remains at the same position in each case (60°). For HOCH, imposition of a pyramidal geometry on the carbonium ion center causes a change in both rotational barriers. One decreases slightly (from 19.6 to 15.4 Kcal/mole) and the other increases to 30.5 Kcal/mole. There is an accompanying change in the position of the minimum of the rotational potential, from 90° towards the gauche structure.  相似文献   

9.
For the CF, PF, SF, and MoF ions appearing after the F1s photoionization, the possibility of dissociation has been shown by the ab initio MO LCAO method within the Z + 1 core equivalent model. According to the calculations, the decay channel AF → AF + F(1s12p6) is energetically open for the ions. So the interpretation of the gas-phase emission FKα spectra, in which the bands are assigned to the discrete transition energies, can be unacceptable for these ions. The conditions and signs of such failure are discussed.  相似文献   

10.
We have applied the spin-density-functional (SDF ) formalism with the local-spin-density (LSD ) approximation to a number of small molecules with the primary aim of testing the approximation for molecular applications. A new numerical method to solve the one-electron wave equation is developed, utilizing the special features of the SDF formalism. We have calculated energy curves, dissociation energies, and equilibrium distances for some diatomic molecules [H (2Σ, 2Σ), H2(1Σ, 3Σ), He (1Σ), and He2(1Σ)] and the vibrational frequencies of H2. The deviations from the experimental results are typically 1/2 eV for the energies and ≤ 0.1 Å for the distances. We discuss the LSD approximation using the concept of an exchange-correlation hole and make predictions about the applicability to other molecules. The LSD approximation is compared with the Hartree-Fock and multiple-scattering-Xα methods and some difficulties in the latter methods are pointed out. It is argued that the SDF formalism within the LSD approximation has physical advantages compared to the Hartree-Fock and Xα methods and that it should provide a simple and useful method for a broad range of applications.  相似文献   

11.
The structure and electronic structure of heavy-group V cluster anions (Sb, Bi) are calculated with density functional methods within the local spin density approximation (LSDA ). The influence of gradient corrections of the exchange and correlation energy is investigated. The calculated vertical and adiabatic ionization energies are in very good agreement with data from photoelectron spectroscopy (PES ) for Sb, whereas the relatively large deviations for Bi can be reduced by the consideration of relativistic effects in a scalar-relativistic manner. Concerning the structures, a strong similarity to the corresponding P clusters was found. In particular, the negatively charged pentamers are planar rings (with similarities to the aromatic [C5H5]? anion) with especially high ionization energies. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The hybrid orbitals of tetrahedral oxy-ions containing some d character have been calculated by maximum overlap method. The d characters of hybrid orbitals increase in the order of SiO, PO, SO, ClO, and decrease in order of GeO, AsO, SeO, BrO. The bond strengths are also obtained for these ions. The hybrid Orbital of VO, CrO, and MnO are of the type d3s as the result of calculation.  相似文献   

13.
Electronic state calculations for the ions H4+ (with symmetries D 4 and C 2v) and H (with symmetries D 5 and D 2d) are made using the valence-bond method. All the configurations obtained from the given set of 1s-functions of Slater type are taken into account. Space functions are used throughout the computation (“spin-free quantum chemistry”). Preliminary quasidiagonalization of the secular equation is implemented by the construction of the multiplet eigenfunctions 2S+1Γ(α) from the initial variational functions. The results of the calculations are as follows: the ion H is unstable, the ion H is stable with equilibrium nuclear conformation of symmetry D 2d and with the energy of dissociation into H and H2 near 4 eV.  相似文献   

14.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

15.
Ground state single determinant LCAO-MO-SCF wave functions, using a large contracted Gaussian basis set (6s, 2p, 1d/3s, 1p), have been computed for the 9 electron molecular systems of CH3 and NH. The minimum energies obtained using Roothaan's open shell SCF procedure for the planar equilibrium geometries were ?39.5703 Hartree for CH3 and ?55.8945 Hartree for NH. Additional properties such as electron populations and multiple moments were calculated from the planar wave functions.  相似文献   

16.
The effects of the basis-set size on many-body energy expansion in LiF? clusters are investigated and correlated with previously reported values on LiCl? analogs. Coulomb and non-Coulomb energies in LiF? at different configurations are also examined. Although at the minimal STO -3G basis Vna(3, 4) and Vna(4, 4) nonadditivity terms were the smallest in the D3h configuration, they were the largest at the extended 6-311 ++G basis. V(m, n) terms where m = n ≥ 3 were found to be playing a small role in the chemistry and physics of LiF? clusters compared with V(3, n) terms in LiCl? clusters.  相似文献   

17.
Hylleraas–CI calculations with linked correlation terms of the form rr are discussed. Formulas for the integration of the angular part are deduced and a method for the reduction of the radial part to auxiliary integrals is given. In the case of the Li atom, it is shown that for the calculation of the ground-state energy an ansatz for the wave function with at most two factors rr is sufficient to achieve spectroscopic accuracy. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Wave-functions of various spin-dependent and spin-free methods are examined from the point of view of the requirements of the exclusion principle and the spin projection. It is shown that the “two-rowed” or “two-columned” requirements of the standard Young tableaux are necessary but not sufficient to replace the “antisymmetry” requirement of a wave-function and to be regarded as exclusion principle. The symmetry adapted wave-functions which are constructed from the matric basis e may not satisfy the exclusion principle and, hence, their usages are open to question. The appropriate symmetry adapted wave-functions which satisfied the exclusion principle are given for any pure spin state. We have also shown that the structure operators NP for bond functions are spin projectors in the Waller-Hartree double-antisymmetrized space only, and should not be used in the Hartree product space. Furthermore, if the corresponding matric operators PNP are used in the Hartree product space, then the wave-functions thus constructed may not be antisymmetric with respect to the permutations of indistinguishable electrons.  相似文献   

19.
The magnitude of reorganization energies in the photoelectron (PE ) spectra of various transition metal compounds with Mn, Fe, and Ni as 3d center is studied by means of a variable INDO Hamiltonian. The Koopmans defects are analyzed as a function of the one-electron resonance integral β and as function of the one- and two-center electron–electron interaction integrals. β has the property of an inverse coupling constant; reorganization effects are enlarged with reduced β values. In the limit of very small resonance integrals a reduction of the calculated Koopmans defects due to modified localization properties of the orbital wave function is encountered. The two-center electron-electron interaction integrals γ have been calculated via an exponential formula with a variable range parameter. In the limit of long-range potentials with flattened γ; gradients a significant reduction of relaxation and correlation is diagnozed; large defects are predicted in the short-range limit with steep gradients in the repulsion potential. The one-center Coulomb and exchange integrals (γ, K) have been modified by a multiplicative factor. With enlarged one-center integrals enhanced Koopmans defects are encountered. The reorganization energies are determined by means of a Green's function approach with a renormalized approximation for the self-energy part.  相似文献   

20.
Various isomers of CH3(H2O) (where n = 1–3) have been studied using self-consistent field gradient techniques. The calculations have largely employed a split valence (4-21G) basis set, although the effects of polarization functions and electron correlation have been considered for a model system. A mechanism for the formation of CH3OH from CH3(H2O), involving linear hydration chains, is proposed, and the relevance of the results to the various proposed pathways for the decomposition of nitrosamine metabolites is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号