首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
A new chiral stationary phase (CSP) was prepared by attachment of macrocyclic glycopeptide antibiotic eremomycin to the epoxy-activated silica under mild conditions. In contrast to CSP with immobilized vancomycin, which is a close structural analogue of eremomycin, the prepared CSP reveals high enantioselectivity for separation of amino acids enantiomers. It was demonstrated by the example of ristocetin A CSP that method of the immobilization of macrocyclic glycopeptide antibiotics affects remarkably the resulting enantioselectivity.  相似文献   

2.
Controlling the elements of planar and axial chirality are the principal challenges in the synthesis of the aglycon of vancomycin. Vancomycin is the prototypical member of the glycopeptide family of antibiotics which are effective for the treatment of infections by methicillin-resistant Staphylococcus aureus. The first total syntheses of the vancomycin and eremomycin aglycons provide insight into the influence of structure on kinetic and thermodynamic control of atropselective macrocyclizations.  相似文献   

3.
Controlling the elements of planar and axial chirality are the principal challenges in the synthesis of the aglycon of vancomycin. Vancomycin is the prototypical member of the glycopeptide family of antibiotics which are effective for the treatment of infections by methicillin-resistant Staphylococcus aureus. The first total syntheses of the vancomycin and eremomycin aglycons provide insight into the influence of structure on kinetic and thermodynamic control of atropselective macrocyclizations.  相似文献   

4.
低浓度甲醛对多肽和蛋白化学修饰的质谱研究   总被引:1,自引:0,他引:1  
采用基质辅助激光解析电离飞行时间质谱( MALDI-TOF MS)和纳升电喷雾四极杆飞行时间串联质谱( Nano-ESI -QTOF MS)技术,以标准肽段和流感病毒基质蛋白酶切肽段为模型,研究了甲醛对蛋白质和多肽主链的修饰作用。采用与实际病毒灭活过程一致的实验条件(4℃,0.025%(V/V)福尔马林(37%(w/w)甲醛溶液)处理72 h),进行甲醛与多肽的化学反应。结果表明,在实验条件下,甲醛能与标准肽段N端的氨基反应生成羟甲基加合物,再发生缩合反应生成亚胺,形成+12 Da的产物。此外,甲醛还能与标准肽段中的精氨酸、赖氨酸的侧链发生反应,生成+12 Da的反应产物。对流感病毒基质蛋白的酶切肽段与甲醛的反应的质谱分析结果显示,多数的肽段都生成了+24 Da的产物,质量的增加来源于肽段N端氨基(+12 Da)和C端精氨酸或赖氨酸的侧链(+12 Da)的贡献。此外,还观察到有一个漏切位点的肽段生成了+36 Da的产物。本研究结果表明,在实验条件下,低浓度甲醛主要与肽段和蛋白的N 端氨基,以及精氨酸和赖氨酸侧链发生反应。本研究为分析低浓度甲醛与蛋白质的反应产物提供了有效的质谱分析方法和解谱依据。  相似文献   

5.
Gas-phase structures of noncovalent complexes between the glycopeptide antibiotics vancomycin, eremomycin, ristocetin, and pseudo aglyco-ristocetin and the cell-wall mimicking peptides N-acetyl-D-Alanyl-D-Alanine, N-acetyl-Glycyl-D-Alanine, and N,N′-di-acetyl L-Lysyl-D-Alanyl-D-Alanine have been probed by hydrogen/deuterium (H/D) exchange using ND3 as reagent gas. The noncovalent complexes were transferred from solution to the vacuum using electrospray ionization. The H/D exchange of the solvent-free ions was studied in a Fourier transform ion cyclotron resonance mass spectrometer. The H/D exchange behavior of the free antibiotics and the free peptides were compared with the exchange observed for the antibiotic–peptide complexes. A general increase was found in the degree of deuterium incorporation upon complex formation with the ligand, which indicates that the peptide binding makes more sites on the antibiotic capable of taking part in the H/D exchange. Apart from H/D exchange, adduct formation with ND3 was observed, but only for the singly protonated peptides and the doubly protonated [ristocetin+N-acetyl-D-Alanyl-D-Alanine]. This marked difference in chemical reactivity of closely related systems such as [ristocetin+N-acetyl-Glycyl-D-Alanine] and [ristocetin+N-acetyl-D-Alanyl-D-Alanine] indicates that the gas-phase structures of these noncovalent complexes are quite sensitive to small changes in the primary structures of the peptides. The gas-phase structures of the antibiotic–peptide complexes are probably different from the solution-phase structures, with the peptides no longer bound to the characteristic solution-phase binding pockets of the antibiotics.  相似文献   

6.
Because teicoplanin and vancomycin are the last line of defense for many bacterial infections, the emergence of resistance to glycopeptide antibiotics in enterococci and streptococci has aroused concern. Despite their similarity in terms of structure and mechanism of action, vancomycin induces the expression of genes that leads to bacterial resistance, and teicoplanin does not. We have used a combination of chemical and enzymatic methods to produce sets of vancomycin and teicoplanin analogues that allow us to consider whether the aglycon, the carbohydrate, or other parts of these molecules stimulate VanB resistance. We show that the teicoplanin and vancomycin aglycons are the structural elements that lead to induction of resistance. We think that lipid-containing analogues of vancomycin, like teicoplanin itself, circumvent resistance because the lipid chain changes the periplasmic distribution of the glycopeptide and, therefore, changes the biosynthetic step that it blocks.  相似文献   

7.
Investigating the intrinsic properties of molecular complexes is crucial for understanding the influence of noncovalent interactions on fundamental chemical reactions. Moreover, specific molecular recognition between a ligand and its receptor is a highly important biological process, but little is known about the effects of ionizing radiation on ligand–receptor complexes. The processes triggered by VUV photoabsorption on isolated noncovalent complexes between the glycopeptide antibiotic vancomycin and a mimic of its receptor have been probed by means of mass spectrometry and synchrotron radiation. In the case of protonated species, the glycosidic bond of vancomycin was cleaved with low activation energy, regardless of the molecular environment. In sharp contrast, for deprotonated species, electron photodetachment from carboxylate groups only triggered CO2 loss, whereas the glycosidic bond remained intact. Importantly, the noncovalent complex was also found to survive VUV photoabsorption only when the native structure is conserved in the gas phase.  相似文献   

8.
BACKGROUND: The vancomycin group of glycopeptide antibiotics is active against a wide range of gram-positive bacteria. The increasing resistance to vancomycin is the result of a change of an amide linkage (D-Ala-D-Ala) to an ester linkage (D-Ala-D-Lactate) in the bacterial cell-wall precursors. RESULTS: We have used a peptide terminating in the sequence -Lys-D-Ala-D-Lactate linked by its amino terminus to a docosanoyl (C22) acyl chain and anchored in a supported lipid monolayer to mimic the surface of vancomycin-resistant enterococci. Surface plasmon resonance analysis was then used to investigate the binding of glycopeptide group antibiotics to this surface. Vancomycin, which dimerises weakly, bound with low affinity, whereas strongly dimerising antibiotics, such as chloroeremomycin, bound with higher affinities. Antibiotics that have attached hydrophobic groups, such as teicoplanin and biphenylchloroeremomycin (LY307599), bound to the lipid monolayer. This resulted in an enhanced affinity for the lipid-anchored peptide at the surface relative to affinities for an analogous non-anchored peptide in solution. CONCLUSIONS: We have shown that the affinities of glycopeptide antibiotics for a model of the surface of a vancomycin-resistant bacterium are enhanced relative to affinities determined in free solution. We have also shown that antibiotics that have membrane anchors bind tightly to the model surface and that this feature is an important determinant of the ability of an antibiotic to kill vancomycin-resistant enterococci.  相似文献   

9.
Formaldehyde cross-linking of proteins is emerging as a novel approach to study protein-protein interactions in living cells. It has been shown to be compatible with standard techniques used in functional proteomics such as affinity-based protein enrichment, enzymatic digestion, and mass spectrometric protein identification. So far, the lack of knowledge on formaldehyde-induced protein modifications and suitable mass spectrometric methods for their targeted detection has impeded the identification of the different types of cross-linked peptides in these samples. In particular, it has remained unclear whether in vitro studies that identified a multitude of amino acid residues reacting with formaldehyde over the course of several days are suitable substitutes for the much shorter reaction times of 10-20 min used in cross-linking experiments in living cells. The current study on model peptides identifies amino-termini as well as lysine, tryptophan, and cysteine side chains, i.e. a small subset of those modified after several days, as the major reactive sites under such conditions, and suggests relative position in the peptide sequence as well as sequence microenvironment to be important factors that govern reactivity. Using MALDI-MS, mass increases of 12 Da on amino groups and 30 Da on cysteines were detected as the major reaction products, while peptide fragment ion analysis by tandem mass spectrometry was used to localize the actual modification sites on a peptide. Non-specific cross-linking was absent, and could only be detected with low yield at elevated peptide concentrations. The detailed knowledge on the constraints and products of the formaldehyde reaction with peptides after short incubation times presented in this study is expected to facilitate the targeted mass spectrometric analysis of proteins after in vivo formaldehyde cross-linking.  相似文献   

10.
A novel synthesized water-soluble variant of lipid II (LII) was used to evaluate the noncovalent interactions between a number of glycopeptide antibiotics and their receptor by bioaffinity electrospray ionization mass spectrometry (ESI-MS). The water-soluble variant of lipid II is an improved design, compared to the traditionally used tripeptide N,N'-diacetyl-L-lysyl-D-alanyl-D-alanine (KAA), of the target molecule on the bacterial cell wall. A representative group of glycopeptide antibiotics was selected for this study to evaluate the validity of the novel cell-wall-mimicking target LII. Structure-function relationships of various glycopeptide antibiotics were investigated by means of 1) bioaffinity mass spectrometry to evaluate solution-phase molecular interactions with both LII and KAA, 2) fluorescence leakage experiments to study the interactions with the membrane-embedded lipid II, and 3) minimum inhibitory concentrations against the indicator strain Micrococcus flavus. Our results with the novel LII molecule reveal that some antibiotics interact differently with KAA and LII. Additionally, our data cast doubt on the hypothesis that antibiotic selfdimerization assists in the in-vivo efficacy. Finally, the water-soluble lipid II proved to be a better model of the bacterial cell wall.  相似文献   

11.
Chiral separations using the macrocyclic antibiotics: a review   总被引:4,自引:0,他引:4  
The macrocyclic antibiotics have recently gained popularity as chiral selectors in CE, HPLC and TLC. The macrocyclic antibiotics used for chiral separations include the ansamycins, the glycopeptides, and the polypeptide antibiotic thiostrepton. Although not strictly considered macrocyclic antibiotics, the aminoglycosides are antibiotics that have been used for chiral separations in CE. More chiral analytes have been resolved using the glycopeptides than with the other macrocyclic antibiotics combined. The glycopeptides vancomycin, ristocetin A and teicoplanin have been used extensively as chiral selectors in CE, with ristocetin A appearing to be the most useful chiral selector followed by vancomycin and teicoplanin, respectively. The macrocyclic antibiotics have also been used as chiral bonded phases in HPLC, and HPLC stationary phases based on vancomycin, ristocetin A and teicoplanin have been commercialized. Ristocetin A seems to be the most useful glycopeptide HPLC bonded phase, but its greater expense can be a drawback. The macrocyclic antibiotics have been used with micelles to improve efficiency, provide unique selectivity, and extend the range of separations to neutral solutes. Changing the macrocyclic antibiotic used in CE or HPLC can significantly alter the enantioselectivity of the separations. In fact, the glycopeptide antibiotics are complementary to one another, where if a partial enantioresolution is obtained with one glycopeptide, there is a high probability that a baseline or better separation can be obtained with another.  相似文献   

12.
Fast-atom bombardment mass spectrometry of a synthetic renin substrate decapeptide (Pro-His-Pro-Phe-His-Leu-Val-Ile-His-D-Lys) indicated the presence of several side-products, including a component 12 Da higher in mass. Low-energy collisionally activated decomposition analyses were performed using a hybrid tandem instrument and demonstrated that the heavier side product had two components, in which the structural modification was either at the N- or the C-terminus. Additional analyses of the N-acetyl derivative indicated that for each component the structural modification blocked a site of N-acetylation. It is suggested that the formation of these side products is attributable to the generation of formaldehyde, during removal of the histidine protecting group (benzyloxymethyl), which reacts with the N-terminus of the peptide to give an imidazolidinone structure or with the D-lysine epsilon-amine group to yield an imine. While the precise genesis of the side-products remains speculative, it is clear that the combined strategy of derivatization and tandem mass spectrometry has allowed structural conclusions concerning individual components of an isobaric mixture.  相似文献   

13.
A new functional group, the hydroxy group, was inserted into a Betti base by reaction with salicylaldehyde, and the naphthoxazine derivatives thus obtained were converted by ring-closure reactions with formaldehyde, acetaldehyde, propionaldehyde or phosgene to the corresponding naphth[1′2′:5,6][1,3]oxazino[3,2-c][1,3]benzoxazine derivatives. Further, the conformational analysis of these polycyclic compounds by NMR spectroscopy and an accompanying molecular modelling are reported; especially, both quantitative anisotropic ring current effects of the aromatic moieties in these compounds and steric substituent effects were employed to determine the stereochemistry of the naphthoxazinobenzoxazine derivatives.  相似文献   

14.
Baltz RH 《Chemistry & biology》2002,9(12):1268-1270
The glycosyltransferases GtfE and GtfD from the vancomycin producer Amycolatopsis orientalis have promiscuous substrate and NDP-sugar specificities. They have been used to generate novel glycopeptide antibiotics containing the heptapeptide scaffolds of vancomycin and teichoplanin.  相似文献   

15.
High-resolution mass measurements by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were employed to characterize laser-induced oxidation of guanine in a small synthetic deoxyoligonucleotide. The oligonucleotide was exposed to high-intensity UV radiation at 266 nm to produce modifications on the guanine base. The primary product showed a +16 Da mass shift relative to the original strand, whereas secondary products showed mass shifts of +32 and +34 Da. The mass shift of the primary product is consistent with an 8-oxoguanine modification. However, the reactivity of the primary product with hot piperidine and other secondary oxidizing agents was different from that of a synthetic oligonucleotide containing 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxoG). Based upon the results, a new reaction scheme involving the formation of an epoxide ring across the C-4 and C-5 positions by UV laser-induced oxidation is suggested. The results also illustrate the ability of MALDI to characterize chemical reactivity rapidly at the a low picomolar level.  相似文献   

16.
Vancomycin, the prototypical member of the glycopeptide family of antibiotics, is a clinically used antibiotic employed against a variety of drug-resistant bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA). The recent emergence of vancomycin resistance, viewed as a growing threat to public health, prompted us to initiate a program aimed at restoring the potency of this important antibiotic through chemical manipulation of the vancomycin structure. Herein, we describe the development of synthetic technology based on the design of a novel selenium safety catch linker, application of this technology to a solid-phase semisynthesis of vancomycin, and the solid- and solution-phase synthesis of vancomycin libraries. Biological evaluation of these compound libraries led to the identification of a number of in vitro highly potent antibacterial agents effective against vancomycin-resistant bacteria. In addition to aiding these investigations, the solid-phase chemistry described herein is expected to enhance the power of combinatorial chemistry and facilitate chemical biology and medicinal chemistry studies.  相似文献   

17.
The formation of heterodimers in mixtures of glycopeptide antibiotics has been detected by electrospray ionization mass spectrometry (ESI-MS), and dimerization constants have been determined. By using NMR spectroscopy, it has been shown that these heterodimers indeed exist in aqueous solution. The dimerization constants obtained by NMR spectroscopy are in good agreement with those determined by ESI-MS. Structural information on the heterodimer interface of some of the heterodimers is obtained by using two-dimensional NMR techniques and reveals that these heterodimers are similar in structure to the homodimers.  相似文献   

18.
A simple and unambiguous method for the detection of the amino acids tyrosine and methionine in peptide structures has been developed. The procedure, which was applied in studies of opioid peptides, is based on continuous-flow fast atom bombardment mass spectrometry (CF-FAB-MS) following chemical modification of the residue to be analyzed. Thus, for the detection of tyrosine, modification reactions such as acetylation or non-radioactive iodination were performed prior to analysis by CF-FAB-MS. O-Acetylation of the tyrosine residue with N-acetylimidazole was accompanied by a shift of 42 Da in the molecular mass of the peptide under investigation. This modification was reversed by treatment with hydroxylamine hydrochloride. Incorporation of iodine resulted in a molecular weight shift of 126 Da per iodine atom. Methionine residues were detected in methionine-enkephalin-containing peptides following S-oxidation with hydrogen peroxide. The procedures described may have a wide application in peptide chemistry, particularly for the identification of peptide fragments containing the above residues, e.g. in studies of processing or degradation of the enkephalins or other neuropeptides (e.g. endorphins and tachykinins).  相似文献   

19.
Yufang Zheng  Zongwei Cai 《Talanta》2009,78(2):358-4837
Determination of O-glycosylation sites in glycopeptides was developed by using two model compounds designed from mucin2 tandem repeat motif and erythropoietin. β-Elimination/addition reaction using dimethylamine on glycosylated site through a Michael-type condensation produced efficient deglycosylation with appropriate chemical modification. The use of dimethylamine was efficient to release the O-linked glycan in a reaction time period of 2-6 h at 55 °C. Peptide sequencing was then performed using the liquid chromatography/quadrupole time-of-flight mass spectrometry and MS-MS experiments. Interpretation of fragmentation pathways of the β-elimination/addition products enabled straightforward recognition of glycosylation site. Compared to the fragmentation of corresponding native peptides, mass shift of −18 Da or +27 Da was clearly observed for the two kinds of β-elimination/addition products of the glycosylated threonine. Dimethylamine was found to provide higher efficiency of β-elimination/addition than methylamine and ammonia.  相似文献   

20.
A mixed chiral sorbent based on silica with immobilized macrocyclic antibiotics eremomycin and vancomycin was synthesized. A possibility of the separation of enantiomers of β-blockers (metoprolol, pindolol, alprenolol, oxprenolol, labetalol, and atenolol) and amino acids (tryptophan, phenylalanine, DOPA, methionine, and acetyl glutamic acid) on this chiral sorbent by HPLC was studied. The influence of the composition of the mobile phase (pH of buffer solution, its concentration, content of organic modifier, and its nature) on the retention times of β-blocker and amino acid enantiomers, selectivity, and resolution of peaks was studied. It was shown that the mixed chiral sorbent has enantioselectivity to both classes of compounds, while silica modified with vancomycin has no ability to the separation of enantiomers of non-derivatized amino acids, and silica modified with eremomycin has no ability to the separation of β-blocker enantiomers. High values of resolution for amino acids (max Rs > 4) and β-blockers (max Rs > 1) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号