首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
A master oscillator power amplifier system comprising a cw Nd:YAG master oscillator, a quasi-cw diode-pumped power amplifier, and a fiber-based stimulated Brillouin scattering phase-conjugate mirror is reported. A 12-pass amplifier configuration is employed to achieve high gain in a small-length slab amplifier. Residual and pump-induced optical inhomogeneities in the slab are corrected by the fiber phase conjugator to achieve diffraction-limited output beam quality. 300 W quasi-cw output and a maximal attainable gain of approximately 150 for the system are obtained.  相似文献   

2.
A hybrid L-band erbium-doped fibre amplifier (EDFA) with enhanced gain characteristic is demonstrated without a significant noise figure penalty. It uses a backward C-band amplified stimulated emission from both the ends of a bismuth-based EDFA system to pump an unpumped erbium-doped fibre (EDF) for gain enhancing. The maximum gain enhancement of 4.0dB is obtained at wavelength 1604nm with EDF length of 20m. The gain spectrum is reasonably fiat in this amplifier compared with the amplifier without an EDF. The gain varies from 27.4 dB to 30.2 dB at wavelength region 1564-1608 nm with incorporation of 20 m EDF. Noise figure also varies from 6.0 to 7.TdB at this wavelength region.  相似文献   

3.
A design study of a high efficiency/gain gyroklystron amplifier is performed to demonstrate amplified radiation power of 200kW operating at 28GHz. A key design feature of the present gyroklystron amplifier is that the amplifier is designed to be high gain so that it can be saturated by a low power solid state power amplifier. A non-linear, time-dependent, large signal numerical code is used to predict tube performance. Simulations predict that a stable amplifier radiation power of 214kW is produced with a saturated gain of 54dB, an electronic efficiency of 37%, and a frequency bandwidth of 0.3% from a five-cavity gyroklystron amplifier. The amplifier gain is found to be very sensitive to a beam velocity spread.  相似文献   

4.
Effect of injection of C-band ASE on L-band erbium-doped fiber amplifier   总被引:3,自引:0,他引:3  
The effect of injecting conventional band (C-band) amplified spontaneous emission on the performance of long-wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated. It uses a circulator and broadband fiber Bragg grating (FBG) to route C-band ASE from a C-band EDFA. Injection of a small amount of ASE (attenuation of 20 dB or above) improves the small signal gain with a negligible noise figure penalty compared to that of an amplifier without the ASE injection. A maximum gain improvement of 3.5 dB is obtained at an attenuation of 20 dB. At very large amounts of ASE injection (attenuation of 0 dB), the gain of the amplifier is clamped at 15.2 dB from ?40 to ?10 dBm with a gain variation of less than 0.3 dB. The saturation power is also increased from ?8 dBm (for without ASE injection) to 2 dBm (VOA=0 dB) with a slight noise figure penalty. These results show that the ASE injection technique can be used either for gain improvement or for gain clamping in L-band EDFA.  相似文献   

5.
光束旋转90°多程放大系统的波前误差校正   总被引:2,自引:1,他引:2       下载免费PDF全文
 光束通过神光-Ⅲ原型装置四程放大系统发生了90°旋转和扩束。在四程放大系统腔镜处放置变形镜校正系统像差是一种新的自适应光学方案,推导出被校正像差与变形镜面形之间的数学关系。理论推导表明,在扩束比大于1的前提下,腔镜处变形镜可以校正系统输出的任意类型的像差,且变形镜对应的面形唯一。理论分析和计算仿真说明该方案的校正能力与像差类型和扩束比有关,扩束比增大将增强变形镜校正像散的能力,但系统旋光消像散的能力也将减弱。  相似文献   

6.
An efficient gain-flattened C-band optical amplifier is demonstrated using a hybrid configuration with a Zirconia-based Erbium-doped fibre (Zr-EDF) and a semiconductor optical amplifier (SOA). The amplifier utilizes a two-stage structure with a midway isolator to improve flat gain characteristic and reduce noise figure. At input signal power of −30 dBm, a flat gain of 28 dB is obtained from wavelength region of 1530 to 1560 nm with gain variation of less than 4 dB. The noise figure is maintained below 11 dB at the flat-gain region. This amplifier has the potential to be used in the high channel count dense wavelength division multiplexing system due to its simplicity and compact design.  相似文献   

7.
巩译  刘芳  孟繁轲 《应用光学》2022,43(5):1015-1021
基于铒/镱共掺光纤放大器(erbium-ytterbium doped fiber amplifier, EYDFA)的理论模型和受激拉曼散射效应的分析理论,利用EYDFA和拉曼光纤放大器(Raman fiber amplifier, RFA)的增益谱互补特性,研究并设计了EYDFA与二阶多泵浦RFA相结合的混合放大器结构。为了得到高增益和低平坦度的混合放大器,引入了粒子群算法优化泵浦光波长和功率。仿真结果表明:在不使用增益均衡器的条件下,所设计的混合光纤放大器在输出端得到了近似相等的输出光功率,在90 nm的带宽范围内平均增益为38.78 dB,增益平坦度为1.1 dB,为混合放大器的设计和优化提供了参考。  相似文献   

8.
In this paper, two stage hybrid optical amplifier (HOA) composed of a single erbium doped fiber amplifier and Raman amplifier is proposed for dense wavelength division multiplexed (DWDM) system and investigate the impact of reduced channel spacing. The performance has been evaluated in the term of gain, gain flatness and noise figure. Also, using gain equalization technique, hybrid optical amplifier that has a gain flatness of 3 dB, and a noise figure of less than 7.4 dB is observed.  相似文献   

9.
基于0.13 m SiGe BiCMOS工艺, 研究和设计了一种D波段功率放大器芯片。该放大器芯片用了四个功率放大器单元和两个T型结网络构成。功率放大器单元采用了三级的cascode电路结构。低损耗的片上T型结网络既能起到片上功率合成/分配的功能, 又能对输入输出进行阻抗匹配。对电路结构进行了设计、流片验证和测试。采用微组装工艺将该芯片封装成为波导模块。小信号测试结果表明:该功放芯片工作频率为125~150 GHz, 最高增益在131 GHz为21 dB, 最低增益在150 GHz为17 dB, 通带内S22小于-7 dB, S11小于-10 dB。大信号测试结果表明:该功放模块在128~146 GHz带内输出功率都大于13 dBm, 在139 GHz时, 具有最高输出功率为13.6 dBm, 且1 dB压缩功率为12.9 dBm。  相似文献   

10.
Erbium-doped fiber amplifier with flat gain over 30 nm bandwidth is demonstrated using flexible selective band methods. The band optical amplifier was designed to cater 44 wavelength division multiplexing channels which were separated into bands of 4 nm. Without using any gain flattening filter, the gain of optical amplifier was maintained at 19 dB with a maximum gain variation of less than 1.6 dB even though the input signal power was varied from −19 to −6 dBm. The amplifier was able to maintain 1 dB gain flatness with 83% chance for any selective bands of 4 nm within the wavelength range from 1530 to 1565 nm. This feature is very attractive to support band optical networks.  相似文献   

11.
The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fiber Raman amplifier (FRA) is studied. The pump source is a 1427.2-nm fiber Raman laser whose power is tunable between 0 - 1200 mW, and the signal source is a tunable narrow spectral bandwidth (〈 10 MHz) external cavity laser (ECL). The Rayleigh scattering lines are amplified by the FRA and Stokes SBS lines are amplified by the FRA and the fiber Brillouin amplifier. The total gain of SBS lines is the production of the gain of Raman amplifier and that of Brillouin amplifier. In experiment, the SBS gain is about 42 dB and the saturation gain of 25-km G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.  相似文献   

12.
We report near-noiseless (noise figure of 0.4 dB, which is an improvement over the theoretical limit of 1.2 dB for a conventional laser amplifier with the same gain of 1.7 dB) optical amplification of laser light in a phase-sensitive fibre amplifier.  相似文献   

13.
We optimize the novel configuration of a hybrid fiber amplifier - Raman assisted-fiber-based optical parametric amplifier (R-FOPA), in which the parametric gain and Raman gain profiles are combined to achieve a flat composite gain profile. The pump powers and the fiber length in the hybrid amplifier are effectively optimized by genetic algorithm (GA) scheme. The optimization results indicate that the RFOPA can achieve a 200-nm flat bandwidth spectrum with the gain of 20 dB and ripple of less than 4 dB.  相似文献   

14.
A new double pass long wavelength band erbium-doped fiber amplifier with enhanced noise figure characteristics is demonstrated. The noise figure is improved by about 2.6 dB with the incorporation of broadband conventional-band fiber Bragg grating (FBG) in between the two segments of erbium-doped fiber. By incorporating both the pre-amplifier and the FBG, the noise figure is further improved, which varies from 4.0 to 5.0 dB in the flat gain region from 1570 to 1600 nm. The gain varies from 32.0 to 33.4 dB within this region. The new amplifier with high gain and low noise figure can be useful as an inline amplifier in a wavelength division multiplexing transmission system.  相似文献   

15.
掺铒光纤非均匀展宽引起的空间烧孔现象导致单波长激光并不能完全控制放大器增益,提出了一种新颖的自动增益控制掺铒光纤放大器的结构:即采用高双折射光纤布拉格光栅产生抽运光,其写制光栅的波峰对应的波长分别为1549.3 nm和1549.83 nm,波长间隔为0.53 nm。通过调整偏振控制器,就实现了单激光或双激光的增益控制。这种设计增益控制范围为40 nm(1530~1570 nm),当输入功率在-40~-15 dBm的动态范围内,双激光增益控制的掺铒光纤放大器的平均增益和噪声系数分别约为22.22 dB和8.69 dB,而它们的漂移分别被钳制在0.69 dB和1.51 dB。系统性能测试表明:双激光控制掺饵光纤放大器在稳定性方面比单激光有着明显的优势。  相似文献   

16.
A gain clamping technique for the long wavelength band erbium-doped fiber amplifier (L-band EDFA) is presented. It uses two circulators and a broad band fiber Bragg grating to route wasted backward C-band ASE from the second stage and launch it back into the input end of the first stage of a two-stage amplifier. The two-stage L-band EDFA has shown a small signal gain improvement of 5.7 dB compared to a single-stage amplifier with a slight noise figure degradation. By utilizing the wasted backward ASE, a L-band gain-clamped EDFA with high gain can be realized. Compared to the unclamped case, this gain-clamping technique is effective in reducing the total gain variation as small as 0.3 dB.  相似文献   

17.
用楔形柱面光纤微透镜耦合的1.3μm SOA组件   总被引:6,自引:3,他引:3  
孔小健  黄德修  刘德明  梅进杰 《光子学报》2003,32(10):1201-1203
运用激光模式耦合理论分析了半导体光放大器(SOA)与单模通信光纤的连接损耗,并设计制作了楔形柱面光纤微透镜用来实现两者的模斑匹配,有效地降低了器件的光耦合损耗.本文介绍了楔形柱面光纤微透镜耦合的1.3 μm半导体光放大器(SOA)组件及其制作方法.该组件的最大增益不小于14 dB,其偏振灵敏度小于1 dB,增益波动不大于0.5 dB.  相似文献   

18.
We present a high-power ytterbium fiber amplifier based on active tapered double-clad fiber (T-DCF) and capable of high single-pass gain. The T-DCF power amplifier seeded with a 320 mW narrow-band signal generates up to 110 W of average output power corresponding to more than 25 dB gain. The amplifier exhibits near-diffraction-limited beam quality (M 2 = 1.06) at the highest output power, which was limited by the available pump power. With a broadband seed source, the amplifier produced a gain of nearly 40 dB obtained for low-signal limit of the seed. The high output power combined with high gain is achieved owing to amplified spontaneous emission (ASE) filtering and increased stimulated Brillouin scattering (SBS) threshold inherent to the axially non-uniform geometry. The amplifier operates efficiently with a wide range of input seed powers thus providing the basis for one-stage tapered amplifier which combines the functions of preamplifier and power amplifier and can be a competitive alternative to multi-stage design.  相似文献   

19.
《Optics Communications》2004,229(1-6):249-252
A gain-clamped semiconductor optical amplifier (SOA) is used as an inline amplifier in combination with a distributed Raman fiber amplifier. The combined amplifier has 20 dB gain and a noise figure below 2.7 dB. The optical signal to noise ratios after five spans of 20 dB loss, equivalent to 5 × 80 km, are over 25.2 dB for eight-channel transmissions. In addition, the potentially compact amplifier shows negligible transients under dynamic add-drops.  相似文献   

20.
In this paper, we propose and demonstrate a simple erbium amplifier module based on an erbium-doped fiber amplifier (EDFA) and an erbium-doped waveguide amplifier (EDWA) in serial, having gain-flatted (GF) and gain-clamped (GC) functions simultaneously. In first proposed GF amplifier scheme, the maximum gain variation of 2.5 dB can be observed in the effective range of 1528 to 1562 nm and the entire gains are above 35 dB with the input signal power of ?30 dBm. Hence, we investigate second scheme by optical feedback method in the proposed fiber amplifier achieving gain-flattened (GF) and gain-clamped (GC) efficiencies simultaneously. Thus, the maximum gain variations of ±0.8 and ±1.8 dB can be obtained in the operating range of 1530 to 1564 nm, when the input signal powers are ?16 and ?40 dBm, respectively. Moreover, the dynamic gain profile can be adjusted and dynamic input power range is also measured based on the proposed GF and GC fiber amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号