首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

2.
The rhenium(V) monooxo complexes (hoz)2Re(O)Cl (1) and [(hoz)2Re(O)(OH2)][OTf] (2) have been synthesized and fully characterized (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline). A single-crystal X-ray structure of 2 has been solved: space group = P1, a = 13.61(2) A, b = 14.76(2) A, c = 11.871(14) A, alpha = 93.69(4) degrees, beta = 99.43(4) degrees, gamma = 108.44(4) degrees, Z = 4; the structure was refined to final residuals R = 0.0455 and Rw = 0.1055. 1 and 2 catalyze oxygen atom transfer from aryl sulfoxides to alkyl sulfides and oxygen-scrambling between sulfoxides to yield sulfone and sulfide. Superior catalytic activity has been observed for 2 due to the availability of a coordination site on the rhenium. The active form of the catalyst is a dioxo rhenium(VII) intermediate, [Re(O)2(hoz)2]+ (3). In the presence of sulfide, 3 is rapidly reduced to [Re(O)(hoz)2]+ with sulfoxide as the sole organic product. The transition state is very sensitive to electronic influences. A Hammett correlation plot with para-substituted thioanisole derivatives gave a reaction constant rho of -4.6 +/- 0.4, in agreement with an electrophilic oxygen transfer from rhenium. The catalytic reaction features inhibition by sulfides at high concentrations. The equilibrium constants for sulfide binding to complex 2 (cause of inhibition), K2 (L x mol(-1)), were determined for a few sulfides: Me2S (22 +/- 3), Et2S (14 +/- 2), and tBu2S (8 +/- 2). Thermodynamic data, obtained from equilibrium measurements in solution, show that the S=O bond in alkyl sulfoxides is stronger than in aryl sulfoxides. The Re=O bond strength in 3 was estimated to be about 20 kcal x mol(-1). The high activity and oxygen electrophilicity of complex 3 are discussed and related to analogous molybdenum systems.  相似文献   

3.
The rhenium oxo complex [Re(O)(hoz)2][TFPB], 1 (where hoz = 2-(2'-hydroxyphenyl)-2-oxazoline(-) and TFPB = tetrakis(pentafluorophenyl)borate) catalyzes the hydrosilation of aldehydes and ketones under ambient temperature and atmosphere. The major organic product is the protected alcohol as silyl ether. Isolated yields range from 86 to 57%. The reaction requires low catalyst loading (0.1 mol %) and proceeds smoothly in CH2Cl2 as well as neat without solvent. In the latter condition, the catalyst precipitates at the end of reaction, allowing easy separation and catalyst recycling. Re(O)(hoz)(H), 3, was prepared, and its involvement in an ionic hydrosilation mechanism was evaluated. Complex 3 was found to be less hydridic than Et3SiH, refuting its participation in catalysis. A viable mechanism that is consistent with experimental findings, rate measurements, and kinetic isotope effects (Et3SiH/Et3SiD = 1.3 and benzaldehyde-H/benzaldehyde-D = 1.0) is proposed. Organosilane is activated via eta2-coordination to rhenium, and the organic carbonyl adds across the coordinated Si-H bond [2 + 2] to afford the organic reduction product.  相似文献   

4.
The detailed syntheses of complexes 1-4, Re(O)(X)(DAP) (X = Me, 1; Cl, 2; I, 3; OTf (triflate), 4) incorporating the diamido pyridine (DAP) ancillary ligand (2,6-bis((mesitylamino)methyl)pyridine) are described and shown to be effective catalysts for oxygen atom transfer (OAT) reactions of PyO to PPh(3). The catalytic activities are as follows: 4≈3 > 2 > 1. The observed electronic trend is consistent with the turnover limiting reduction of the proposed Re(VII) dioxo intermediate, Re(O)(2)(X)(DAP), during the catalytic cycle. The catalytic activity of complexes 1-3 was compared to previously published diamido amine (DAAm) oxorhenium complexes of the type Re(O)(X)(DAAm) (X = Me, 5; Cl, 6; I, 7 and DAAm = N,N-bis(2-arylaminoethyl)methylamine) which exhibit hydrolytic degradation during the catalytic reaction. Complexes 1-3 displayed higher turnover frequencies compared to 5-7. This higher catalytic activity was attributed to the more rigid DAP ligand backbone, which makes the complexes less susceptible to decomposition. However, another decomposition pathway was proposed for this catalytic system due to the observation of Re(O)(3)((MesNCH(2))(MesNCH)NC(5)H(3)) 8 in which one arm of the DAP ligand is oxidized.  相似文献   

5.
A series of cyanide-bridged complexes that combine a low-valent photoacceptor rhenium(I) metal center with an electroactive midvalent rhenium(V) complex were prepared. The synthesis involved the preparation of novel asymmetric rhenium(V) oxo compounds, cis-Re(V)O(CN)(acac(2)en) (1) and cis-Re(V)O(CN)(acac(2)pn) (2), formed by reacting trans-[Re(V)O(OH(2))(acac(2)en)]Cl or trans-Re(V)O(acac(2)pn)Cl with [NBu(4)][CN]. The μ-bridged cyanide mixed-oxidation Re(V)-Re(I) complexes were prepared by incubating the asymmetric complexes, 1 or 2, with fac-[Re(I)(bipy)(CO)(3)][OTf] to yield cis-[Re(V)O(acac(2)en)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (3) and [cis-Re(V)O(acac(2)pn)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (4), respectively.  相似文献   

6.
The oxygen atom transfer (OAT) reaction cited does not occur on its own in >10 h. Oxorhenium(V) compounds having the formula MeReO(dithiolate)PZ(3) catalyze the reaction; the catalyst most studied was MeReO(mtp)PPh(3), 1, where mtpH(2) = 2-(mercaptomethyl)thiophenol. The mechanism was studied by multiple techniques. Kinetics (initial-rate and full-time-course methods) established this rate law: v = k(c)[1][PyO](2)[PPh(3)](-1). Here and elsewhere PyO symbolizes the general case XC(5)H(4)NO and PicO that with X = 4-Me. For 4-picoline, k(c) = (1.50 +/- 0.05) x 10(4) L mol(-1) s(-1) in benzene at 25.0 degrees C; the inverse phosphine dependence signals the need for the removal of phosphine from the coordination sphere of rhenium prior to the rate-controlling step (RCS). The actual entry of PPh(3) into the cycle occurs in a fast step later in the catalytic cycle, after the RCS; its relative rate constants (k(4)) were evaluated with pairwise combinations of phosphines. Substituent effects were studied in three ways: for (YC(6)H(4))(3)P, a Hammett correlation of k(c) against 3sigma gives the reaction constant rho(c)(P) = +1.03, consistent with phosphine predissociation; for PyO rho(c)(N) = -3.84. It is so highly negative because PyO enters in three steps, each of which is improved by a better Lewis base or nucleophile, and again for (YC(6)H(4))(3)P as regards the k(4) step, rho(4) = -0.70, reflecting its role as a nucleophile in attacking a postulated dioxorhenium(VII) intermediate. The RCS is represented by the breaking of the covalent N-O bond within another intermediate inferred from the kinetics, [MeReO(mtp)(OPy)(2)], to yield the dioxorhenium(VII) species [MeRe(O)(2)(mtp)(OPy)]. A close analogue, [MeRe(O)(2)(mtp)Pic], was identified by (1)H NMR spectroscopy at 240 K in toluene-d(8). The role of the "second" PyO in the rate law and reaction scheme is attributed to its providing nucleophilic assistance to the RCS. Addition of an exogenous nucleophile (tetrabutylammonium bromide, Py, or Pic) caused an accelerating effect. When Pic was used, the rate law took on the new form v = k(NA)[1][PicO][Pic][PPh(3)](-1); k(NA) = 2.6 x 10(2) L mol(-1) s(-1) at 25.0 degrees C in benzene. The ratio k(c)/k(NA) is 58, consistent with the Lewis basicities and nucleophilicities of PicO and Pic.  相似文献   

7.
The addition of an [X](+) electrophile to the five-coordinate oxorhenium(V) anion [Re(V)(O)(ap(Ph))(2)](-) {[ap(Ph)](2-) = 2,4-di-tert-butyl-6-(phenylamido)phenolate} gives new products containing Re-X bonds. The Re-X bond-forming reaction is analogous to oxo transfer to [Re(V)(O)(ap(Ph))(2)](-) in that both are 2e(-) redox processes, but the electronic structures of the products are different. Whereas oxo addition to [Re(V)(O)(ap(Ph))(2)](-) yields a closed-shell [Re(VII)(O)(2)(ap(Ph))(2)](-) product of 2e(-) metal oxidation, [Cl](+) addition gives a diradical Re(VI)(O)(ap(Ph))(isq(Ph))Cl product ([isq(Ph)](?-) = 2,4-di-tert-butyl-6-(phenylimino)semiquinonate) with 1e(-) in a Re d orbital and 1e(-) on a redox-active ligand. The differences in electronic structure are ascribed to differences in the π basicity of [O](2-) and Cl(-) ligands. The observation of ligand radicals in Re(VI)(O)(ap(Ph))(isq(Ph))X provides experimental support for the capacity of redox-active ligands to deliver electrons in other bond-forming reactions at [Re(V)(O)(ap(Ph))(2)](-), including radical additions of O(2) or TEMPO(?) to make Re-O bonds. Attempts to prepare the electron-transfer series monomers between Re(VI)(O)(ap(Ph))(isq(Ph))X and [Re(V)(O)(ap(Ph))(2)](-) yielded a symmetric bis(μ-oxo)dirhenium complex. Formation of this dimer suggested that Re(VI)(O)(ap(Ph))(isq(Ph))Cl may be a source of an oxyl metal fragment. The ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to undergo radical coupling at oxo was revealed in its reaction with Ph(3)C(?), which affords Ph(3)COH and deoxygenated metal products. This reactivity is surprising because Re(VI)(O)(ap(Ph))(isq(Ph))Cl is not a strong outer-sphere oxidant or oxo-transfer reagent. We postulate that the unique ability of Re(VI)(O)(ap(Ph))(isq(Ph))Cl to effect oxo transfer to Ph(3)C(?) arises from symmetry-allowed mixing of a populated Re≡O π bond with a ligand-centered [isq(Ph)](?-) ligand radical, which gives oxyl radical character to the oxo ligand. This allows the closed-shell oxo ligand to undergo a net 2e(-) oxo-transfer reaction to Ph(3)C(?) via kinetically facile redox-active ligand-mediated radical steps. Harnessing intraligand charge transfer for radical reactions at closed-shell oxo ligands is a new strategy to exploit redox-active ligands for small-molecule activation and functionalization. The implications for the design of new oxidants that utilize low-barrier radical steps for selective multielectron transformations are discussed.  相似文献   

8.
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO > Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.  相似文献   

9.
Neutral and asymmetrical hydrazido(3-)rhenium(V) heterocomplexes of the type [Re(eta(2)-L(4))(L(n))(PPh(3))] (eta(2)-L(4) = NNC(SCH(3))S; H(2)L(1) = S-methyl beta-N-((2-hydroxyphenyl)ethylidene)dithiocarbazate, 1, H(2)L(2) = S-methyl beta-N-((2-hydroxyphenyl)methylidene)dithiocarbazate, 2) are prepared via ligand-exchange reactions in ethanolic solutions starting from [Re(V)(O)Cl(4)](-) in the presence of PPh(3) or from [Re(V)(O)Cl(3)(PPh(3))(2)]. The distorted octahedral coordination sphere of these compounds is saturated by a chelated hydrazido group, a facially ligated ONS Schiff base, and PPh(3). Reduction-substitution reactions starting from [NH(4)][Re(VII)O(4)] in acidic ethanolic mixtures containing PPh(3) and H(2)L(n) (or its dithiocarbazic acid precursor H(3)L(4)) produce another example of chelated hydrazido(3-) rhenium(V) derivative, namely [Re(eta(2)-L(4))Cl(2)(PPh(3))(2)], 3. On the contrary, the N-methyl-substituted dithiocarbazic acid H(2)L(3) reacts with perrhenate to give the known nitrido complex [Re(N)Cl(2)(PPh(3))(2)]. Rhenium(V) complexes incorporating the robust eta(2)-hydrazido moiety represent key intermediates helpful for the comprehension of the reaction pathway which generates nitridorhenium(V) species starting from oxo precursors. An essential requirement for the stabilization of such chelated hydrazido-Re(V) units is the triple deprotonation at the hydrazine nitrogens, thereby providing efficient pi-electron circulation in the resulting five-membered ring. The thermal stability of these units is affected by the nature of the anchoring donor, thione sulfur ensuring stronger chelation than nitrogen and oxygen. The eta(2)-hydrazido complexes are characterized by conventional physicochemical techniques, including the X-ray crystal structure determination of 1 and 3.  相似文献   

10.
A series of dithiolene complexes of the general type [Mo(IV)(QR')(S(2)C(2)Me(2))(2)](1)(-) has been prepared and structurally characterized as possible structural and reactivity analogues of reduced sites of the enzymes DMSOR and TMAOR (QR' = PhO(-), 2-AdO(-), Pr(i)()O(-)), dissimilatory nitrate reductase (QR' = 2-AdS(-)), and formate dehydrogenase (QR' = 2-AdSe(-)). The complexes are square pyramidal with the molybdenum atom positioned 0.74-0.80 A above the S(4) mean plane toward axial ligand QR'. In part on the basis of a recent clarification of the active site of oxidized Rhodobacter sphaeroides DMSOR (Li, H.-K.; Temple, C.; Rajagopalan, K. V.; Schindelin, H. J. Am. Chem. Soc. 2000, 122, 7673), we have adopted the minimal reaction paradigm Mo(IV) + XO right arrow over left arrow Mo(VI)O + X involving desoxo Mo(IV), monooxo Mo(VI), and substrate/product XO/X for direct oxygen atom transfer of DMSOR and TMAOR enzymes. The [Mo(OR')(S(2)C(2)Me(2))(2)](1)(-) species carry dithiolene and anionic oxygen ligands intended to simulate cofactor ligand and serinate binding in DMSOR and TMAOR catalytic sites. In systems with N-oxide and S-oxide substrates, the observed overall reaction sequence is [Mo(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-) + XO --> [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-) --> [Mo(V)O(S(2)C(2)Me(2))(2)](1)(-). Direct oxo transfer in the first step has been proven by isotope labeling. The reactivity of [Mo(OPh)(S(2)C(2)Me(2))(2)](1)(-) (1) has been the most extensively studied. In second-order reactions, 1 reduces DMSO and (CH(2))(4)SO (k(2) approximately 10(-)(6), 10(-)(4) M(-)(1) s(-)(1); DeltaS(double dagger) = -36, -39 eu) and Me(3)NO (k(2) = 200 M(-)(1) s(-)(1); DeltaS(double dagger) = -21 eu) in acetonitrile at 298 K. Activation entropies indicate an associative transition state, which from relative rates and substrate properties is inferred to be concerted with X-O bond weakening and Mo-O bond making. The Mo(VI)O product in the first step, such as [Mo(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), is an intermediate in the overall reaction sequence, inasmuch as it is too unstable to isolate and decays by an internal redox process to a Mo(V)O product, liberating an equimolar quantity of phenol. This research affords the first analogue reaction systems of biological N-oxide and S-oxide substrates that are based on desoxo Mo(IV) complexes with biologically relevant coordination. Oxo-transfer reactions in analogue systems are substantially slower than enzyme systems based on a k(cat)/K(M) criterion. An interpretation of this behavior requires more information on the rate-limiting step(s) in enzyme catalytic cycles. (2-Ad = 2-adamantyl, DMSOR = dimethyl sulfoxide reductase, TMAOR = trimethylamine N-oxide reductase)  相似文献   

11.
The oxorhenium(V) dimer {MeReO(edt)}2 (1; where edt = 1,2-ethanedithiolate) catalyzes S atom transfer from thiiranes to triarylphosphines and triarylarsines. Despite the fact that phosphines are more nucleophilic than arsines, phosphines are less effective because they rapidly convert the dimer catalyst to the much less reactive catalyst [MeReO(edt)(PAr3)] (2). With AsAr3, which does not yield the monomer, the rate law is given by v = k[thiirane][1], independent of the arsine concentration. The values of k at 25.0 degrees C in CDCl3 are 5.58 +/- 0.08 L mol(-1) s(-1) for cyclohexene sulfide and ca. 2 L mol(-1) s(-1) for propylene sulfide. The activation parameters for cyclohexene sulfide are deltaH(double dagger) = 10.0 +/- 0.9 kcal mol(-1) and deltaS(double dagger) = -21 +/- 3 cal K(-1) mol(-1). Arsine enters the catalytic cycle after the rate-controlling release of alkene, undergoing a reaction with the Re(VII)(O)(S) intermediate that is so rapid in comparison that it cannot be studied directly. The use of a kinetic competition method provided relative rate constants and a Hammett reaction constant, rho = -1.0. Computations showed that there is little thermodynamic selectivity for arsine attack at O or S of the intermediate. There is, however, a large kinetic selectivity in favor of Ar3AsS formation: the calculated values of deltaH(double dagger) for attack of AsAr3 at Re=O vs Re=S in Re(VII)(O)(S) are 23.2 and 1.1 kcal mol(-1), respectively.  相似文献   

12.
The reaction of diazabutadienes of type R'N=C(R)-C(R)=NR', L (R = H, Me; R' = cycloalkyl, aryl) with Re(V)OCl(3)(AsPh(3))(2) has furnished Re(V)OCl(3)(L), 1, from which Re(III)(OPPh(3))Cl(3)(L), 2, and Re(V)(NAr)Cl(3)(L), 3, have been synthesized. Chemical oxidation of 2(R = H) by aqueous H(2)O(2) and of 3(R = H) by dilute HNO(3) has yielded Re(IV)(OPPh(3))Cl(3)(L'), 5, and Re(VI)(NAr)Cl(3)(L'), 4, respectively, where L' is the monoionized iminoacetamide ligand R'N=C(H)-C(=O)-NR'(-). Finally, the reaction of Re(V)O(OEt)X(2)(PPh(3))(2) with L has furnished bivalent species of type Re(II)X(2)(L)(2), 6(X = Cl, Br). The X-ray structures of 1 (R = Me, R' = Ph), 3 (R = H, R' = Ph, Ar = Ph), and 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl) are reported revealing meridional geometry for the ReCl(3) fragment and triple bonding in the ReO (in 1) and ReNAr (in 3 and 4 ) fragments. The cis geometry (two Re-X stretches) of ReX(2)(L)(2) is consistent with maximized Re(II)-L back-bonding. Both ReX(2)(L)(2) and Re(NAr)Cl(3)(L') are paramagnetic (S = (1)/(2)) and display sextet EPR spectra in solution. The g and A values of Re(NAr)Cl(3)(L') are, respectively, lower and higher than those of ReX(2)(L)(2). All the complexes are electroactive in acetonitrile solution. The Re(NAr)Cl(3)(L) species display the Re(VI)/Re(V) couple near 1.0 V versus SCE, and coulometric studies have revealed that, in the oxidative transformation of 3 to 4, the reactive intermediate is Re(VI)(NAr)Cl(3)(L)(+) which undergoes nucleophilic addition of water at an imine site followed by induced electron transfer finally affording 4. In the structure of 3 (R = H, R' = Ph, Ar = Ph), the Re-N bond lying trans to the chloride ligand is approximately 0.1 A shorter than that lying trans to NPh. It is thus logical that the imine function incorporating the former bond is more polarized and therefore subject to more facile nucleophilic attack by water. This is consistent with the regiospecificity of the imine oxidation as revealed by structure determination of 4 (R = H, R' = cycloheptyl, Ar = C(6)H(4)Cl).  相似文献   

13.
The cationic oxorhenium(V) complex [Re(O)(hoz)(2)(CH(3)CN)][B(C(6)F(5))(4)] [1; Hhoz = 2-(2'-hydroxyphenyl)-2-oxazoline] reacts with aryl azides (N(3)Ar) to give cationic cis-rhenium(VII) oxoimido complexes of the general formula [Re(O)(NAr)(hoz)(2)][B(C(6)F(5))(4)] [2a-2f; Ar = 4-methoxyphenyl, 4-methylphenyl, phenyl, 3-methoxyphenyl, 4-chlorophenyl, and 4-(trifluoromethyl)phenyl]. The kinetics of formation of 2 in CH(3)CN are first-order in both azide (N(3)Ar) and oxorhenium(V) complex 1, with second-order rate constants ranging from 3.5 × 10(-2) to 1.7 × 10(-1) M(-1) s(-1). A strong inductive effect is observed for electron-withdrawing substituents, leading to a negative Hammett reaction constant ρ = -1.3. However, electron-donating substituents on phenyl azide deviate significantly from this trend. Enthalpic barriers (ΔH(?)) determined by the Eyring-Polanyi equation are in the range 14-19 kcal mol(-1) for all aryl azides studied. However, electron-donating 4-methoxyphenyl azide exhibits a large negative entropy of activation, ΔS(?) = -21 cal mol(-1) K(-1), which is in sharp contrast to the near zero ΔS(?) observed for phenyl azide and 4-(trifluoromethyl)phenyl azide. The Hammett linear free-energy relationship and the activation parameters support a change in the mechanism between electron-withdrawing and electron-donating aryl azides. Density functional theory predicts that the aryl azides coordinate via N(α) and extrude N(2) directly. For the electron-withdrawing substituents, N(2) extrusion is rate-determining, while for the electron-donating substituents, the rate-determining step becomes the initial attack of the azide. The barriers for these two steps are inverted in their order with respect to the Hammett σ values; thus, the Hammett plot appears with a break in its slope.  相似文献   

14.
The structures of the complex of 2,2'-(methylimino)bis(N,N-dioctylacetamide) (MIDOA) with M(VII)O(4)(-) (M = Re and Tc), which were prepared by liquid-liquid solvent extraction, were investigated by using (1)H nuclear magnetic resonance (NMR), extended X-ray absorption fine structure (EXAFS), and infrared (IR) spectroscopy. The (1)H NMR spectra of the complex of MIDOA with Re(VII)O(4)(-) prepared in the organic solution suggest the transfer of a proton from aqueous to organic solution and the formation of the H(+)MIDOA ion. The EXAFS spectra of the complexes of H(+)MIDOA with Re(VII)O(4)(-) and Tc(VII)O(4)(-) show only the M-O coordination of the aquo complexes, suggesting that the chemical state of M(VII)O(4)(-) was unchanged during the extraction process. The results from (1)H NMR and EXAFS, therefore, provide evidence of M(VII)O(4)(-)···H(+)MIDOA complex formation in the organic solution. The IR spectra of Re(VII)O(4)(-)···H(+)MIDOA and Tc(VII)O(4)(-)···H(+)MIDOA were analyzed based on the structures and the IR spectra that were calculated at the B3LYP/cc-pVDZ level. Comparison of the observed and calculated IR spectra demonstrates that an intramolecular hydrogen bond is formed in H(+)MIDOA, and the M(VII)O(4)(-) ion interacts with H(+)MIDOA through multiple C-H(n)···O hydrogen bonds.  相似文献   

15.
Osz K  Espenson JH 《Inorganic chemistry》2003,42(25):8122-8124
The compound MeRe(S)(mtp)(PPh3), 2, where mtpH2 is 2-(mercaptomethyl)thiophenol, was used to catalyze the reaction between pyridine N-oxides, PyO, and triphenylphosphine. The rate law is -d[PyO]/dt=kc'[2].[PyO](1/2), with kc' at 25.0 degrees C in benzene=0.68 (4-picoline N-oxide) and 3.5x10(-3) dm(3/2) mol(-1/2) s(-1) (4-NO2-pyridine N-oxide). A chain mechanism with three steady-state thiorhenium species as chain carriers is implicated.  相似文献   

16.
A series of five free-base corroles were metalated and brominated to form 10 manganese(III) corroles. Two of the free-base corroles and six manganese(III) corroles were analyzed by X-ray crystallography, including one complex that may be considered a transition-state analogue of oxygen atom transfer (OAT) from (oxo)manganese(V) to thioansisole. Oxidation by ozone allowed for isolation of the 10 corresponding (oxo)manganese(V) corroles, whose characterization by (1)H and (19)F NMR spectroscopy and electrochemistry revealed a low-spin and triply bound manganese-oxygen moiety. Mechanistic insight was obtained by investigating their reactivity regarding stoichiometric OAT to a series of p-thioanisoles, revealing a magnitude difference on the order of 5 between the β-pyrrole brominated (oxo)manganese(V) corroles relative to the nonbrominated analogues. The main conclusion is that the (oxo)manganese(V) corroles are legitimate OAT agents under conditions where proposed oxidant-coordinated reaction intermediates are irrelevant. Large negative Hammett ρ constants are obtained for the more reactive (oxo)manganese(V) corroles, consistent with expectation for such electrophilic species. The least reactive complexes display very little selectivity to the electron-richness of the sulfides, as well as a non-first-order dependence on the concentration of (oxo)manganese(V) corrole. This suggests that disproportionation of the original (oxo)manganese(V) corrole to (oxo)manganese(IV) and (oxo)manganese(VI) corroles, followed by substrate oxidation by the latter complex, gains importance when the direct OAT process becomes progressively less favorable.  相似文献   

17.
The kinetics of the oxidation of [RuIII(edta)(H2O)] (edta=ethylenediaminetetraacetate) (complex-1) with pyridine N-oxide (PyO) to [RuV(edta)O] (complex-2) and subsequent oxo-transfer from complex-2 to dimethylsulfide (dms) leading to the formation of dimethylsulfoxide (dmso) have been studied spectrophotometrically. The rate of formation of oxo-complex (2) in the reaction of complex-1 with PyO was found to be substitution controlled and first order both in complex-1 and PyO concentrations. The rate of oxo transfer from complex-2 to dms was found to be first order with respect to [complex-2] and [dms]. Kinetic data and activation parameters are found to be consistent to the proposed mechanism.  相似文献   

18.
19.
The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics. Measured hydration rates for the AnO(2)(OH)(+) were substantially faster than for the AnO(2)(+), reflecting additional vibrational degrees of freedom in the hydroxide ions for stabilization of hot adducts. Dioxygen addition resulted in UO(2)(+)(O(2))(H(2)O)(n) (n = 2, 3), whereas O(2) addition was not observed for NpO(2)(+) or PuO(2)(+) hydrates. DFT suggests that two-electron three-centered bonds form between UO(2)(+) and O(2), but not between NpO(2)(+) and O(2). As formation of the UO(2)(+)-O(2) bonds formally corresponds to the oxidation of U(V) to U(VI), the absence of this bonding with NpO(2)(+) can be considered a manifestation of the lower relative stability of Np(VI).  相似文献   

20.
Espenson JH  Yiu DT 《Inorganic chemistry》2000,39(18):4113-4118
The stable compound CH3ReO3 (MTO), upon treatment with aqueous hypophosphorous acid, forms a colorless metastable species designated MDO, CH3ReO2(H2O)n (n = 2). After standing, MDO is first converted to a yellow dimer (lambda max = 348 nm; epsilon = 1.3 x 10(4) L mol-1 cm-1). That reaction follows second-order kinetics with k = 1.4 L mol-1 s-1 in 0.1 M aq trifluoromethane sulfonic acid at 298 K. Kinetics studies as functions of temperature gave delta S++ = -4 +/- 15 J K-1 mol-1 and delta H++ = 71.0 +/- 4.6 kJ mol-1. A much more negative value of delta S++ would be expected for simple dimerization, suggesting the release of one or more molecules of water in forming the transition state. If solutions of the dimer are left for a longer period, an intense blue color results, followed by precipitation of a compound that does, even after a long time, retain the Re-CH3 bond in that aq. hydrogen peroxide generates the independently known CH3Re(O)(O2)2(H2O). The blue compound may be analogous to the intensely colored purple cation [(Cp*Re)3(mu 2-O)3(mu 3-O)3ReO3]+. If a pyridine N-oxide is added to the solution of the dimer, it is rapidly but not instantaneously lost at the same time that a catalytic cycle, separately monitored by NMR, converts the bulk of the PyO to Py according to this stoichiometric equation in which MDO is the active intermediate: C5H5NO + H3PO2-->C5H5N + H3PO3. A thorough kinetic study and the analysis by mathematical and numerical simulations show that the key step is the conversion of the dimer D into a related species D* (presumably one of the two mu-oxo bonds has been broken); the rate constant is 5.6 x 10(-3) s-1. D* then reacts with PyO just as rapidly as MDO does. This scheme is able to account for the kinetics and other results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号