首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gu X  Xue D 《Inorganic chemistry》2007,46(13):5349-5353
Two novel 3D heterometallic coordination polymers, Ln(4)(mu(3)-OH)(2)Cu(6)I(5)(IN)(8)(OAc)(3) (Ln = Nd (1), Pr (2); HIN = isonicotinic acid, HOAc = acetic acid), have been synthesized under hydrothermal conditions and characterized by elemental, infrared, and thermogravimetric analyses and single-crystal X-ray diffraction. Both compounds are isostructural and crystallize in the monoclinic system, space group P2(1)/c. Both polymers are constructed from 2D lanthanide-cluster polymers based on the {Ln(16)} wheel-cluster and 1D copper-cluster polymers based on the {Cu(6)I(5)} cluster, which represent the first examples of 3D coordination frameworks created by using a combination of two different types of metal-cluster polymer units, namely, a high-nuclearity lanthanide-cluster polymer and a transition-metal-cluster polymer.  相似文献   

2.
A new synthetic approach to prepare flexible porous coordination polymers (PCPs) by the use of soft secondary building units (SBUs) which can undergo multiple reversible metal-ligand bonds breaking is reported. We have prepared a zinc paddle-wheel-based two-fold interpenetrated PCP, {[Zn(2)(tp)(2)(L(2))]·2.5DMF·0.5water}(n) (2a, H(2)tp = terephthanlic acid; L(2) = 2,3-difluoro-1,4-bis(4-pyridyl)benzene), showing dynamic structural transformations upon the removal and rebinding of guest molecules. The X-ray structures at different degrees of desolvation indicate the highly flexible nature of the framework. The framework deformations involve slippage of the layers and movement of the two interpenetrated frameworks with respect to each other. Interestingly, the coordination geometry of a zinc paddle-wheel unit (one of the popular SBUs) is considerably changed by bond breaking between zinc and oxygen atoms during the drying process. Two zinc atoms in the dried form 2d reside in a distorted tetrahedral geometry. Compound 2d has no void volume and favors the uptake of O(2) over Ar and N(2) at 77 K. The O(2) and Ar adsorption isotherms of 2d show gate-opening-type adsorption behaviors corroborating the structure determination. The CO(2) adsorption isotherm at 195 K exhibits multiple steps originating from the flexibility of the framework. The structural transformations of the zinc clusters in the framework upon sorption of guest molecules are also characterized by Raman spectroscopy in which the characteristic bands corresponding to ν(sym)(COO(-)) vibration were used.  相似文献   

3.
YX Tan  YP He  J Zhang 《Inorganic chemistry》2012,51(18):9649-9654
High stability and permanent porosity are the premise of general applicability for metal-organic framework materials (MOFs). By varying degrees of success on increasing the connectivity of the linear pillar 4,4'-bipyridine (bpy), two isostructural flexible frameworks [M(2)(obb)(2)(DMF)(2)]·2DMF (1, M = Zn or Cu; H(2)obb = 4,4'-oxybis(benzoic acid), DMF = N,N-dimethylformamide) with no gas sorption are structurally modified into two rigid frameworks [Zn(2)(obb)(2)(bpy)]·DMF (2) and [Cu(2)(obb)(2)(bpy)(0.5)(DMF)]·2DMF (3) with notable gas sorption and separation properties. Especially for 3, it exhibits gas selective uptake for the adsorption of CO(2) over N(2) and CH(4) under 273 K and has an interesting physically lock effect in benzene and cyclohexane sorption. The results provide a successful strategy on tuning framework stability of flexible structures via adding rigid pillars.  相似文献   

4.
Starting with the same precursors, pyridine-2,3-dicarboxylate (pyrdc) and 4,4'-bipyridyl (bipy), two 3D porous coordination polymers, {[Cu(bipy)(0.5)(pyrdc)]·3H(2)O} (1) and {[Cu(bipy)(0.5)(pyrdc)]·0.5bipy·3H(2)O} (2), have been synthesized by changing the solvent system from MeOH/H(2)O to EtOH/H(2)O. Single-crystal structure analysis revealed that 1 and 2 are supramolecular isomers with 3D pillared-layer structures having 1D channel systems. Isomer 1 has a flexible structure and shows gated adsorption behavior, while framework 2 has a rigid backbone and exhibits the adsorption properties of typical microporous materials.  相似文献   

5.
The crystal structure of [Cu(4,4'-bipyridine) 2(CF 3SO 3) 2] n metal-organic framework (CuBOTf) of one-dimensional pore networks after pre-evacuation at 383 K was determined with synchrotron X-ray powder diffraction measurement. Effective nanoporosity of the pre-evacuated CuBOTf was determined with N 2 adsorption at 77 K. The experimental H 2 and D 2 adsorption isotherms of CuBOTf at 40 and 77 K were measured and then compared with GCMC-simulated isotherms using the effective nanoporosity. The quantum-simulated H 2 and D 2 isotherms at 77 K using the Feynman-Hibbs effective potential coincided with the experimental ones, giving a direct evidence on the quantum molecular sieving effect for adsorption of H 2 and D 2 on CuBOTf. However, the selectivity for the 1:1 mixed gas of H 2 and D 2 was 1.2. On the contrary, experimental H 2 and D 2 isotherms at 40 K had an explicit adsorption hysteresis, originating from the marked pore blocking effect on measuring the adsorption branch. The blocking effect for quantum H 2 is more prominent than that for quantum D 2; the selectivity for D 2 over H 2 at 40 K was in the range of 2.6 to 5.8. The possibility of the quantum molecular sieving effect for H 2 and D 2 adsorption on [Cu 3(benzene-1,3,5-tricarboxylate) 2(H 2O) 3] n of three-dimensional pore networks was also shown at 77 K.  相似文献   

6.
Zavakhina  M. S.  Samsonenko  D. G.  Dybtsev  D. N.  Argent  S. P.  Blake  A. J.  Schröder  M.  Fedin  V. P. 《Russian Chemical Bulletin》2015,64(12):2908-2913
Russian Chemical Bulletin - Chiral 2D and 3D metal-organic coordination polymers [Cu2(bpy)2(Hdml)2(HCOO)]-(HCOO)·2H2O (1) and [Cu(bpy)(Hphl)(HCOO)]·H2O (2) were synthesized by heating a...  相似文献   

7.
Three series of porous lanthanide metal-organic coordination polymers, namely [Cu(bpy)Ln(3)(ip)(5)(Hip)(H(2)O)] [Ln = Er (1a), Y (1b), Eu (1c); bpy = 2,2'-bipyridine, H(2)ip=isophthalic acid], [Cu(3)(bpy)(2)Ln(2)(ip)(6)(H(2)O)(5)] [Ln = Yb (2a), Gd (2b), Tb (2c)], and [Cu(3)Ln(2)(ip)(6)] [Ln = Eu (3a), Gd (3b)] have been synthesized hydrothermally by the reaction of the combination of 3d-4f metal centers and N-/O-donor ligands. X-ray diffraction analyses reveal that polymers 1a-c and 2a-c, as well as 3a, b are isomorphous in structure. Polymers 1a-c consist of 3D alpha-Po networks based on a inorganic rod-shaped secondary building units (SBUs) of {Er(6)Cu(2)(bipy)(2)(O(2)C)(11)} which are 27.03 A in length. Polymers 2a-c also contain 3D alpha-Po networks, constructed from shorter (14.79 A) but similarly rod-shaped SBUs of {Yb(2)Cu(3)(bpy)(2)(O(2)C)(12)}. The structure also contains hydrogen-bonded (H(2)O)(6) chains which can be reversibly dehydrated/rehydrated. Polymers 3a, b contain metal carboxylate substructures which have 2D (6,3) topologies; these layers are bridged by the ip(2-) ligands to give an overall 3D network which contains two sorts of cavities. This series of Ln-Cu coordination polymers are further characterized by antiferromagnetic behavior.  相似文献   

8.
Wen LL  Dang DB  Duan CY  Li YZ  Tian ZF  Meng QJ 《Inorganic chemistry》2005,44(20):7161-7170
Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.  相似文献   

9.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

10.
Maji TK  Ohba M  Kitagawa S 《Inorganic chemistry》2005,44(25):9225-9231
Two novel coordination polymers of Cu(II), viz. [Cu(bipy)(1,4-napdc)(H2O)2]n and {[Cu(bpe)1.5(1,4-napdc)](H2O)}n (bipy=4,4'-bipyridine; bpe=1,2-bis(4-pyridyl)ethane; 1,4-napdc2-=1,4-naphthalenedicarboxylate), have been synthesized and structurally characterized by changing only the pillar motifs. Both the compounds crystallize by slow evaporation from the ammoniacal solution of the as-synthesized solid. Framework 1 crystallizes in monoclinic crystal system, space group P2/n (No. 13), with a=11.028(19) A, b=11.16(3) A, c=7.678(13) A, beta=103.30(5) degrees, and Z=2. Framework 2 crystallizes in triclinic system, space group, P (No. 2), a=10.613(4) A, b=10.828(10) A, c=13.333(9) A, alpha=85.25(9) degrees, beta=82.59(6) degrees, gamma=60.37(5) degrees, and Z=2. The structure determination reveals that has a 2D network based on rectangular grids, where each Cu(II) is in 4+2 coordination mode. The 2D networks stacked in a staggered manner through the pi-pi interaction to form a 3D supramolecular network. In the case of, a {Cu(bpe)1.5}n ladder connected by 1,4-napdc2- results a 2D cuboidal bilayer network and each bilayer network is interlocked by two adjacent identical network (upper and lower) forming 3-fold interpenetrated 3D framework with small channel along the c-axis, which accommodates two water molecules. The TGA and XRPD measurements reveal that both the frameworks are stable after dehydration. Adsorption measurements (N2, CO2, and different solvents, like H2O, MeOH, etc.) were carried out for both frameworks. Framework shows type-II sorption profile with N2 in contrast to H2O and MeOH, which are chemisorbed in the framework. In case of, only H2O molecules can diffuse into the micropore, whereas N2, CO2, and MeOH cannot be adsorbed, as corroborated by the smaller channel aperture. The low-temperature (300-2 K) magnetic measurement of and reveals that both are weakly antiferromagnetically coupled (J=-1.85 cm-1, g=2.02; J=-0.153 cm-1, g=2.07), which is correlated by the magnetic pathway to the corresponding structure.  相似文献   

11.
Zang S  Su Y  Li Y  Zhu H  Meng Q 《Inorganic chemistry》2006,45(7):2972-2978
Three 3D robust homochiral helical coordination polymers, [Cu(2,2',3,3'-H2odpa)(bpy)] (1), {[Ni4(2,2',3,3'-odpa)2(bpy)4(H2O)4].(H2O)16} (2), and {[Co4(2,2',3,3'-odpa)2(bpy)4(H2O)4].(H2O)14} (3), have been hydrothermally synthesized from a flexible ligand of 2,2',3,3'-odpda (2,2',3,3'-oxydiphthalic dianhydride). Compound 1 crystallized in space group P3(1)21 and has a rare chiral dense qzd 7.(5)9 topology that incorporates single helical substructures with the same accessibility, whereas compounds 2 and 3 crystallized in the space group C2 and possessed isostructural 3D chiral open frameworks based on the homochiral 2D sheets and 4,4'-bpy pillars. TGA and PXRD analyses show that the porous framework of 2 is stable after the removal of solvent water molecules. In contrast, 3 changed its structure to an amorphous one because of the simultaneous loss of solvent and coordination water molecules. 1 is nearly paramagnetic, whereas weak ferromagnetic interactions between M(II) (M = Ni, Co) ions have been found in 2 and 3.  相似文献   

12.
A new dynamic porous coordination polymer (PCP) [Ni(dcpy)(bipy)(0.5)(H(2)O)]·1.5H(2)O (1) was synthesized by assembly of 3-(2',5'-dicarboxylphenyl)pyridine (dcpy), 4,4'-bipyridine (bipy) and NiSO(4)via solvothermal, hydrothermal and microwave methods, displaying a wavelike 2D stacked layer framework. Gas adsorption studies for 1 shows a high selective adsorption of CO(2) over other gases (N(2), CH(4) and CO). The adsorption capacity for N(2) can be moderately altered by different activation temperatures demonstrating the framework flexibility of 1.  相似文献   

13.
Reversible vapochromic behavior of a porous copper(II) coordination polymer {[Cu(bhnq)(THF)2](THF)}n (1; THF = tetrahydrofuran) constructed from a flexible hingelike ligand H2bhnq [2,2'-bis(3-hydroxy-1,4-naphthoquinone)] has been investigated by adsorption measurements. The isotherms show large hysteretic and stepwise profiles, suggesting the occurrence of the guest-induced framework transformation. The dynamic coil-like behavior of 1 can be controlled through the change of the hydrogen-bonding interactions caused by the reversible and selective incorporation of guest molecules.  相似文献   

14.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

15.
In situ synchrotron X-ray powder diffraction patterns of porous coordination polymers [[Cu(2)(pzdc)(2)(bpy)].G] have been measured (pzdc = pyrazine-2,3-dicarboxylate, bpy = 4,4'-bipyridine) (where G = H(2)O for CPL-2 superset H(2)()O, G = benzene for CPL-2 superset benzene, and G = void for the apohost). The structures of apohost and CPL-2 superset benzene were determined from Rietveld analysis. Adsorption of benzene in the channels induced a remarkable contraction in the crystal (b axis; 6.8%, volume; 4.9%), although the channels were occupied by the benzene molecules. This crystal transformation provides a new pore structure that is well suited for benzene molecules, and we denote it as a "shape-responsive fitting" transformation. This type of pore gives rise to a new guideline: frameworks can be composed of flexible motifs that are linked via strong bond and/or stiff motifs that are connected via weaker bonds.  相似文献   

16.
Rational self-assembly of a long V-shaped 3,3',4,4'-benzophenonetetracarboxylate (bptc) ligand and metal salts in the presence of linear bidentate ligand yield a series of novel pillared helical-layer complexes, namely, [Cu2(bptc)(bpy)2] (1), [M3(Hbptc)2(bpy)3(H2O)4].2 H2O (M = Fe(2) and Ni(3)), [Co2(bptc)(bpy)(H2O)].0.5 bpy (4), [Cd2(bptc)(bpy)(H2O)2].H2O (5), [Mn2(bptc)(bpy)1.5(H2O)3] (6) and [M2(bptc)(bpy)0.5(H2O)5].0.5 bpy (M = Mn(7), Mg(8) and Co(9), bpy=4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. The structure of 1 consists of two types of chiral layers, one left-handed and the other right-handed, which are connected by bpy pillars to generate a novel 3D open framework featuring four distinct helical chains. Compounds 2 and 3 are isostructural and feature 3D structures formed from the interconnection of arm-shaped helical layers with bpy pillars. Compound 4 is a pillared helical double-layer complex containing four different types of helices, among which the nine-fold interwoven helices constructed from triple-stranded helical motifs are unprecedented. Compound 5 exhibits a novel 3D covalent framework which features nanosized tubular channels. These channels are built from helical layers pillared by bptc ligands. The structure of 6 is constructed from {Mn(bptc)(H2O)}n2n- layers, which consist of left- and right-handed helical chains, pillared by [Mn2(bpy)3(H2O)4]4+ complexes into a 3D framework. To the best of our knowledge, compounds 1-6 are the first examples of pillared helical-layer coordination polymers. Compounds 7-9 are isostructural and exhibit interesting 2D helical double-layer structures, which are constructed from {M(bptc)(H2O)2}n2n- ribbons cross-linked by [M2(bpy)(H2O)6]4+ complexes. Furthermore, the 3D supramolecular structures of 7-9 are similar to the 3D structure of 6, and the 2D structure of 7 can be transformed into the 3D structure of 6 at higher reaction temperature. By inspection of the structures of 1-9, it is believed that the V-shaped bptc ligand and V-shaped phthalic group of the bptc ligand are important for the formation of the helical structures. The magnetic behavior of compounds 1, 2, 4, 6, and 9 was studied and indicated the existence of antiferromagnetic interactions. Moreover, compound 5 shows intense photoluminescence at room temperature.  相似文献   

17.
Yang E  Zhang J  Li ZJ  Gao S  Kang Y  Chen YB  Wen YH  Yao YG 《Inorganic chemistry》2004,43(21):6525-6527
The hydrothermal reaction of mellitic acid, 4,4'-bipydine, and Cu(CH(3)COO)(2).H(2)O gave rise to a novel 3D supramolecular architecture interpenetrated by three types of coordination polymer motifs. Two independent [[Cu(2)(mellitate)(4,4'-bpy)(H(2)O)(2)](2)(-)] 3D polymers incorporating helical substructures were interwoven into a 3D network with double-stranded helical tubes that host 1D linear polymers [Cu(4,4'-bpy)(H(2)O)(4)](2+)](n).  相似文献   

18.
Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to ‘unlock’ the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

Stimuli-responsive metal–organic frameworks (MOFs) exhibit dynamic structural changes upon exposure to external stimuli. Here the coordination geometry of a post-synthetically added metal ion drastically changes the adsorption properties.  相似文献   

19.
Exposure to CH(2)Cl(2) at room temperature induces single-crystal to single-crystal transformation of the 2D coordination network [Zn(2)L(DMF)(4)]·2DMF·4H(2)O to the 3D metal-organic framework [Zn(2)L(H(2)O)(2)]·xsolv via dimerization of the metal-connecting points, leading to significant enhancement in framework stability, porosity, and H(2) uptake capacity.  相似文献   

20.
{Cu(bpy)(H2O)2(BF4)2(bpy)} (Cu‐MOF; MOF=metal–organic framework; bpy=4,4′‐bipyridine), with a 3D‐interpenetrated structure and saturated Cu coordination sites in the framework, possesses unexpectedly high activity in the ring‐opening reaction of epoxides with MeOH, although the reaction rate drops remarkably with more bulky alcohols. This (apparent) size selection and the single Cu2+ sites in an identical environment of the crystalline matrix resemble zeolites. The real nature of active sites was investigated by attenuated total reflection infrared (ATR‐IR), Raman, EPR, and UV/Vis spectroscopies. Cu‐MOF has highly dynamic structural properties that respond to MeOH; its framework dimensions change from 3D to 2D by restructuring to a symmetric coordination of four bpy units to Cu. This interaction is accompanied by the partial dissolution of Cu‐MOF as multi‐Cu clusters, in which Cu2+ ions are connected with bpy ligands. Although both molecular and surface catalysis contribute to the high rate of alcoholysis, the soluble oligomeric species (Cumbpyn) are far more active. Finally, addition of diethyl ether to the reaction mixture induces the reconstruction of dissolved and solid Cu‐MOF to the original framework structure, thereby allowing excellent recyclability of Cu‐MOF as an apparent heterogeneous catalyst. In contrast, the original Cu‐MOF structure is maintained upon contact with larger alcohols, such as iPrOH and tBuOH, thus leading to poor activity in epoxide ring opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号