首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用包括磁控溅射和热氧化的两步法在Si(111)衬底上制备了Sn掺杂ZnO纳米针.首先用磁控溅射法在Si(111)衬底上制备Sn:Zn薄膜,然后在650℃的Ar气氛中对薄膜进行热氧化,制备出Sn掺杂ZnO纳米针.样品的结构、成分和光学性质采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDX)谱和光致发光(PL)光谱等技术手段进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶Sn掺杂ZnO纳米针,Sn掺杂量为2.5%(x,原子比),底部和头部直径分别为200-500 nm和40 nm,长度为1-3μm,结晶质量较高.室温光致发光光谱显示紫外发光峰比纯ZnO的发光峰稍有蓝移,这可归因于能谱分析中探测到的Sn的影响.基于本实验的实际条件,简单探讨了Sn掺杂ZnO纳米针的生长机制.  相似文献   

2.
利用直流电沉积方法在多孔氧化铝模板的孔洞中生成锌纳米线,在氧气氛围中,于800°C下氧化2h,将氧化铝中的锌氧化成氧化锌.本研究利用氧气氛围进行锌的氧化,大大提高了传统方法的氧化锌纳米线的制备效率.用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)对其形貌及成分进行表征和分析,结果表明,氧化铝模板的有序孔洞中填充了大尺寸、均匀连续的多晶态氧化锌纳米线.纳米线具有约1000:1的高纵横比,其长度等于氧化铝模板的厚度,直径约为80nm.光致发光(PL)光谱表明,氧化锌纳米线在504nm处有由于氧空位引起的较强蓝绿光发射.这为进一步研究ZnO/AAO组装体发学性质和开发新型功能器件提供了基础.  相似文献   

3.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   

4.
Delicate hollow ZnO urchins have been fabricated by thermal evaporation of metallic zinc powders in a tube furnace without the use of additive, high temperature, or low pressure. The phase transformation, morphologies, and photoluminescence evolution of the ZnO products were carefully studied and investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectra. These studies indicated that the growth of hollow ZnO urchins involves the vaporization of Zn powder, solidification of liquid droplets, surface oxidation, sublimation, and self-catalytic growth of one-dimensional nanowires.  相似文献   

5.
Sol–gel spin-coating was used to grow zinc oxide (ZnO) thin films doped with 0–2.5 at.% B on quartz substrates. The structural, optical, and electrical properties of the thin films were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet–visible spectroscopy, and van der Pauw Hall-effect measurements. All the thin films had deposited well onto the quartz substrates and exhibited granular morphology. The average crystallite size, lattice constants, residual stress, and lengths of the bonds in the crystal lattice of the thin films were calculated from the XRD data. The PL spectra showed near-band-edge (NBE) and deep-level emissions, and B doping varied the PL properties and increased the efficiency of the NBE emission. The optical transmittance spectra for the undoped ZnO and boron-doped zinc oxide (BZO) thin films show that the optical transmittance of the BZO thin films was significantly higher than that of the undoped ZnO thin films in the visible region of the spectra and that the absorption edge of the BZO thin films was blue-shifted. In addition, doping the ZnO thin films with B significantly varied the absorption coefficient, optical band gap, Urbach energy, refractive index, extinction coefficient, single-oscillator energy, dispersion energy, average oscillator strength, average oscillator wavelength, dielectric constant, and optical conductivity of the BZO thin films. The Hall-effect data suggested that B doping also improved the electrical properties such as the carrier concentration, mobility, and resistivity of the thin films.  相似文献   

6.
Single crystalline Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by a chemical vapor deposition method (CVD). The nanostructures were grown by autocatalytic mechanism at walls of an alumina boat. The structure and properties of the doped ZnO is fully characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), scanning and transmission electron microscopy (SEM and TEM), and photoluminescence (PL) methods. The synthesis was carried out for 10 min giving vertically aligned nanowires with mean diameter of 50–400 nm and with length of up to several microns. The nanowires were grown along ±[0001] direction. The concentration of Eu3+ dopant in the synthesized nanowires was varied from 0.7 to 0.9 at %. The crystal structure and microstructures of the doped nanomaterials were discussed and compared with undoped ZnO. The photoluminescence spectra show that emission of doped samples were shifted towards orange-red region (2.02 eV) relative to undoped zinc oxide nanostructures (2.37 eV) due to Eu3+ intraionic transitions from ZnO/Eu.  相似文献   

7.
Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2·6H2O] and hexamethylenetetraamine( C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

8.
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and-0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol·L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol·L-1.  相似文献   

9.
ZnO nanostructures, including single-crystal nanowires, nanoneedles, nanoflowers, and tubular whiskers, have been fabricated at a modestly low temperature of 550 degrees C via the oxidation of metallic Zn powder without a metal catalyst. Specific ZnO nanostructures can be obtained at a specific temperature zone in the furnace depending on the temperature and the pressure of oxygen. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) studies show that ZnO nanostructures thus prepared are single crystals with a wurtzite structure. X-ray excited optical luminescence (XEOL) from the ZnO nanostructures show noticeable morphology-dependent luminescence. Specifically, ZnO nanowires of around 15 nm in diameter emit the strongest green light. The morphology of these nanostructures, their XEOL, and the implication of the results will be discussed.  相似文献   

10.
The present study involves the synthesis of Ce3+ doped ZnO nanophosphors by the zinc nitrate and cerium nitrate co-precipitation method. The synthesized nanophosphors were characterized with respect to their crystal structure, crystal morphology, particle size and photoluminescence (PL) properties using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), transmission electron microscopy (TEM)/Energy-dispersive X-ray spectroscopy (EDS) and PL-spectroscopy respectively. XRD results revealed that ZnO nanophosphors are single phase and cubic type structures. Further, PL spectra of ZnO:Ce3+ nanophosphors showed green emission because of the charge transfer at single occupied oxygen vacancies with ZnO holes and red emission due to the cerium ion transitions. Intensity and fine structure of the Ce3+ luminescence and its temperature dependence are strongly influenced by the doping conditions. The formation of ZnO:Ce3+ nanophosphors was confirmed by Fourier transform infrared (FTIR) and XRD spectra.  相似文献   

11.
Nanocomposites composed of nano-fibrous ZnO thin films and porous silicon (PS) were prepared and examined by atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy, and photoluminescence (PL) to investigate their structural and optical properties. PS, consisting of irregular and random nanosized-pores, was prepared by electrochemical anodization. The nano-fibrous ZnO thin films were grown on PS by the sol-gel spin-coating method. The texture coefficient (TC (hkl)) of the nano-fibrous ZnO thin films was calculated to determine the preferred orientation. The nano-fibrous ZnO thin films were grown with a c-axis preferred orientation. The residual stress in the films was reduced in the case of PS. The observed broad PL emission peak from 460 to 598 nm was attributed to coupled emission from ZnO to PS. The results show that white light luminescence with blue, green, and red emission peaks having highly uniform intensities can be obtained from the nanocomposite via a relatively simple and low-cost sol-gel spin-coating method.  相似文献   

12.
One-dimensional structure of ZnO nanorod arrays on nanocrystalline TiO2/ITO conductive glass substrates has been fabricated by cathodic reduction electrochemical deposition methods in the three-electrode system, with zinc nitrate aqueous solution as the electrolyte, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence (PL) spectra. The effects of film substrates, electrolyte concentration, deposition time, and methenamine (HMT) addition on ZnO deposition and its luminescent property were investigated in detail. The results show that, compared with on the ITO glass substrate, ZnO is much easily achieved by electrochemical deposition on the TiO2 nanoparticle thin films. ZnO is hexagonally structured wurtzite with the c-axis preferred growth, and further forms nanorod arrays vertically on the substrates. It is favorable to the growth of ZnO to extend the deposition time, to increase the electrolyte concentration, and to add a certain amount of HMT in the system, consequently improving the crystallinity and orientation of ZnO arrays. It is demonstrated that the obtained ZnO arrays with high crystallinity and good orientation display strong band-edge UV (375 nm) and weak surface-state-related green (520 nm) emission peaks.  相似文献   

13.
Nanocrystalline ZnO nanorods were successfully grown by ultrasonication using an acidic ethanolic zinc acetate precursor solution followed by a flow coating process and annealing at 600 °C. The ZnO nanorods obtained were hexagonal in shape and showed a high degree of uniformity in size and distribution. These samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectrophotometry and the results are discussed. This approach appears to be the easiest way to fabricate bulk ZnO nanorods.  相似文献   

14.
Nano crystalline cesium (Cs) doped ZnO thin films were deposited on glass substrate by sol gel spin coating method with 1–3 mol.% doping concentration and different annealing temperatures. The deposited films were characterized by X-ray diffraction (XRD), Hall Effect, Photoluminescence (PL) and UV–Visible studies. XRD measurements reveal that all the samples abound in the wurtzite structure with polycrystalline nature. An increase in crystalline size from 19.60 to 44.54 nm is observed with the increase of doping concentration. Electrical conductivity of Cs doped ZnO films were observed from Hall effect measurements and the maximum carrier concentration obtained is 7.35 × 1018 cm?3. The near band emission (384 nm) peak intensity increases with the increase of Cs doping concentration and a maximum intensity 55,280 was observed for CZ3 film from PL spectrum. Also a low energy near infrared (NIR) emission peak centered at 1.62 eV appears for the Cs doped ZnO films. The average transmission of CZ film is 88 % and the absorption edge is red shifted with the increase of Cs doping concentration and also the optical conductivity increases in the UV region.  相似文献   

15.
采用脉冲激光沉积(PLD)法在Si(111)衬底上制备了Eu3+,Li+共掺杂的ZnO薄膜,分别在450,500,550和600℃条件下进行退火,退火气氛为真空。利用X射线衍射(XRD)仪和荧光分光光度计研究了退火温度对薄膜结构和光致发光(PL)的影响。研究结果表明,Eu3+,Li+共掺杂的ZnO薄膜具有c轴择优取向,Eu3+,Li+没有单独形成结晶的氧化物,均以离子形式掺入ZnO晶格中。PL谱中有较宽的ZnO基质缺陷发光,ZnO基质与稀土Eu3+之间存在能量传递,但没有有效的能量传递。随着退火温度的增加,薄膜发光先增强后减弱,退火温度为550℃时发光最强。当用395 nm的激发光激发样品时,仅观察到稀土Eu3+在594 nm附近的特征发光峰,但发光强度随退火温度变化不明显。  相似文献   

16.
在三电极体系中,以硝酸锌水溶液作为电解液,采用阴极还原电沉积法成功实现了一维纳米结构ZnO阵列在TiO2纳米粒子/ITO导电玻璃薄膜基底上的沉积,并通过XRD、SEM、EDS和PL光谱等方法对样品进行了表征.重点研究了薄膜基底、电解液浓度、沉积时间、六次亚甲基四胺(HMT)的引入对ZnO沉积及其发光性质的影响.结果显示:与ITO玻璃基底相比,ZnO更易于在TiO2纳米粒子薄膜上实现电化学沉积.ZnO属于六方晶系的铅锌矿结构,并且沿着c-轴方向表现出明显的择优化生长,以形成垂直于基底的ZnO纳米棒阵列.延长沉积时间、增加电解液浓度和引入一定量的HMT等均对ZnO的生长有促进作用,进而使其纳米棒的结晶度和取向程度提高,进而解释了所得的薄膜分别约在375和520nm处表现出ZnO的强而窄的带边紫外光发射峰和弱而宽的表面态绿光发射带.  相似文献   

17.
离子液体中不同形貌ZnO纳米材料的合成及表征   总被引:22,自引:0,他引:22  
在不同的咪唑基离子液体中通过微波加热合成出了ZnO的片状聚集体、棒状聚集体和塔棒聚集体等纳/微米结构, 考察了不同合成条件对ZnO形貌的影响, XRD表明产物为六方相纤锌矿ZnO结构, SEM和TEM表明产物形貌主要分为片的聚集体和棒的聚集体, 电子衍射表明ZnO棒具有单晶结构, 片的聚集体的PL谱表明在室温下这种形貌的ZnO具有很强的绿光发射和弱紫外光发射现象.  相似文献   

18.
Thin films of titanium arsenide have been deposited from the atmospheric pressure chemical vapour deposition (APCVD) of [Ti(NMe(2))(4)] and (t)BuAsH(2) at substrate temperatures between 350-550 °C. Highly reflective, silver coloured films were obtained which showed borderline metallic-semiconductor resistivities. The titanium arsenide films were analyzed by scanning electron microscopy (SEM), Raman spectroscopy, wavelength dispersive analysis of X-rays (WDX), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The films showed variable titanium to arsenic ratios but at substrate temperatures of 500 and 550 °C films with a 1 : 1 ratio of Ti : As, consistent with the composition TiAs, were deposited. Powder XRD showed that all of the films were crystalline and consistent with the formation of TiAs. Both nitrogen and carbon contamination of the films were negligible.  相似文献   

19.
Zinc sulfide (ZnS) thin films have been successfully deposited via spray pyrolysis using an aqueous solution of thiourea and zinc acetate onto glass substrate. The effect of varying substrate temperature (150, 200,250 and 300 °C) on structure and optical properties is presented. The films have been characterized by X- ray diffraction (XRD), UV-Vis-NIR spectrometry, photoluminescence (PL) spectroscopy and field emission scanning electron microscopy (FESEM). All the deposited ZnS films exhibit a cubic structure, while crystallinity and morphology are found to depend on spray temperature. PL analysis indicates the presence of violet and green emissions arising from Zn and S vacancies. The value of bandgap of ZnS films is found to decrease slightly with increasing substrate temperature; varying in the range 3.52–3.25 eV, most probably associated with the formation of Zn(S,O) solid solution.  相似文献   

20.
ZnO thin films were successfully deposited on SiO2/Si substrate using the sol–gel technique and annealed in various annealing atmospheres at 900 °C by rapid thermal annealing (RTA). X-ray diffraction revealed the (002) texture of ZnO thin films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that the grains of the ZnO thin film were enlarged and its surface was smoothed upon annealing in oxygen. PL measurement revealed two ultraviolet (UV) luminescence bands at 375 and 380 nm. The intensity of the emission peak at 380 nm became stronger as the concentration of oxygen in the annealing atmosphere increased. The X-ray photoelectron spectrum (XPS) demonstrated that a more stoichiometric ZnO thin film was obtained upon annealing in oxygen and more excitons were generated from the radiative recombination carriers consistently. Additionally, the UV intensity increased with the thickness of ZnO thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号