首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LET spectra measurements made with passive plastic nuclear track detectors (PNTDs) were found to depend on detector orientation, shielding and experiment location. LET spectra were measured at several locations on LDEF as part of the P0006 LETSME experiment (Benton and Parnell, 1984), the P0004 Seeds in Space experiment (Parks and Alston, 1984), the A0015 Free Flyer Biostacks and the M0004 Fiber Optics Data Link experiment (Taylor, 1984). Locations included the east, west and Earth sides of the LDEF satellite. The LET spectra measured with PNTDs deviated significantly from calculations, especially for high LET particles (LET·H2O ≥ 100 keV/μm). At high LETs, short-range inelastic secondary particles produced by trapped proton interactions with the nuclei of the detector were found to be the principal contributor to LET spectra. At lower LETs, the spectra appeared to be due to short-range, inelastic and stopping primary protons, with primary GCR particles making a smaller contribution.

The dependence of LET spectra on detector orientation and shielding was studied using the four orthogonal stacks in the P0006 experiment. Both measurements of total track density and LET spectra showed a greater number of particles arriving from the direction of space than from Earth. Measurements of LET spectra in CR-39 PNTD on the east (leading) and west (trailing) sides of LDEF showed a higher rate of production at the west side. This was caused by a larger flux of trapped protons on the west side as predicted by the east/west trapped proton anisotropy in the South Atlantic Anomaly (SAA).

Track density measured in CR-39 PNTDs increased as a function of shielding depth in the detector stack. A similar measurement made in a thick stack of CR-39 interspersed with layers of Al and exposed to 154 MeV protons at a ground-based accelerator showed a similar result, indicating that a significant fraction of the particle events counted were from secondaries and that the total cross-section for production of proton-induced secondaries increased as the energy of primary protons attenuated. Little change was seen in either total differential or integral LET spectra as a function of shielding depth, indicating that the increase in cross section with decreasing proton energy affected mostly the shorter range secondary components. Similarity in the slopes of LET spectra from ground-based proton exposures and the A0015 LET spectra showed that modeling of a monoenergetic proton beam transported through a 1-D geometry was a useful first step in modeling the production of secondary particles by trapped protons in the SAA.  相似文献   


2.
Directionality of incident space radiation is a significant factor in spacecraft shielding and astronaut dosimetry in low Earth orbit (LEO). Particle directionality of GCR and trapped protons were measured on LDEF with plastic nuclear track detectors (PNTD) from the P0006 west-side experiment. This experiment consisted of a thick detector stack and is described more fully in a companion article (Benton et al., 1996). The anisotropy of the trapped protons produced maximum intensity for protons arriving from the west. The fluences of the eastward directed trapped protons have been measured by selection of the particles on the basis of range in the PNTDs. The measured fluences are compared with the model calculations of Armstrong and Colborn (1993).  相似文献   

3.
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope.  相似文献   

4.
The average absorbed dose and dose equivalent rates from space radiation were observed using passive dosimeters with same material and configuration at the same location onboard the International Space Station (ISS) over four different occasions (I–IV) between 2007 and 2008. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Total average absorbed dose rate increased by 68 ± 9% over two years. The observed increase was due to the incremental increase in the altitude of the ISS over the course of the experiment and the corresponding increase in trapped proton flux encountered during passage of the ISS through the SAA (South Atlantic Anomaly), which was confirmed with the results monitored by DB-8 active dosimeter on the ISS. The PNTD data showed that the average absorbed dose and dose equivalent rates from particles of LETH2O ≥ 100 keV/μm were 28 ± 2% and 51 ± 3% of ≥10 keV/μm during Periods I–III, while the dose contributions of particles ≥100 keV/μm during Period IV were 36 ± 5% and 59 ± 10%, respectively. The integral dose equivalent distribution during Period IV shows significant enhancement from particles ≥100 keV/μm. These facts suggest that a significant fraction of the high LET component is due to short-range recoil nuclei produced in target fragmentation reactions between primary protons and the nuclei of the passive dosimeters and surrounding materials.  相似文献   

5.
We studied the track response for the copolymer of CR-39 monomer with N-isopropylacrylamide (NIPAAm) as well as etching properties. It was found that copoly (CR-39/NIPAAm/Naugard 445) composed in wieght ratio of 99/1/0.01 is highly sensitive to low LET particles in the region below 10 keV/μm of LET and able to record normally incident particles of LET down to 1.5 keV/μm, recording protons up to the energy of 27 MeV. These results were compared with the responses for two types of CR-39 detectors containing a small quantity of antioxidant. The threshold energy proton registration is discussed.  相似文献   

6.
We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (> 100 keV/μm) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (> 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.  相似文献   

7.
Samples of polyallyldiglycolcarbonate (PADC) track etch detectors (TED) were exposed to high energy 12C nuclei at the particle beam of the Dubna synchrophasotron. The energy of 12C nuclei varied between 0.1 and 1.5 GeV per amu.

At the low studied energies the linear energy transfer (LET) of these nuclei is higher than the detector threshold value. Then, the primary particle tracks are directly etched in the detector surface. The detection efficiency approaches to 100% at perpendicular incidence. Their LET has been established by means of standard authomatized procedure recently developed. The LET values found here are in good agreement with theoretical ones.

At 1.5 GeV per amu (LET 8.4 KeV μm−1) the secondary particle tracks were evaluated in all the exposed detectors. The energy deposited by these particles was compared to the energy deposited through primary ionization losses. It was found out that its contribution to the total dose is relatively lower than for protons of comparable energies. In some of these samples even the tracks of the primary nuclei were observed. It follows that the detection threshold of the developed LET spectrometer should be below 10 keV μm−1.  相似文献   


8.
《Radiation measurements》2001,34(1-6):193-197
A spectrometer of the linear energy transfer (LET) based on the chemically etched polyallyldiglycolcarbonate (PADC) track etched detector was developed. The LET spectra are determined through the measurements of track parameters, it covers LET range between 10 and 700 keV/μm in tissue. A combined experimental and theoretical approach allowed the estimation of the critical dimensions of the sensitive volume necessary for developing a track to several nm. It seemed interesting to us to compare the LET spectra obtained by this method with the microdosimetric spectra available on the basis of a classical experimental microdosimetry method, a tissue equivalent proportional counter, for which the critical dimensions simulated are of the order of a few μm.

Both methods of experimental microdosimetry were compared in the high energy radiation reference fields and on the subsonic aircraft board. It was found out that the microdosimetric distributions are similar; some differences are, nevertheless, observed. Further studies with the goal to explain them are outlined.  相似文献   


9.
Production of target fragments from reactions of 160 MeV proton beams in aluminum and polyethylene was measured with CR-39 plastic nuclear track detectors (PNTD). Due to the detection limit of PNTD, primary protons cannot be detected; only low-energy short-range target fragments are registered. As a feasibility study, a so called “two step etching method” was employed to get the linear energy transfer (LET) spectra, absorbed dose, and dose equivalent. This method is discussed in this paper, together with the measured results.  相似文献   

10.
Thermoluminescent detectors (TLDs) are widely used for the dosimetry of photons and electrons. They are less used for the radiation with higher linear energy transfer (LET). One of the reasons for that is that their TL relative efficiency η decreases for the most of them with increasing LET.

The paper presents first a review of author's experimental results in which η was established for charged particles having LET of the order from 1 to 100 keV/μm in tissue. Among TLDs studied were known materials like LiF:Mn; Ti; Al–P glass; CaSO4:Dy; Al2O3:Na; and Al2O3:C. It was found that the dependence of their η on LET is not the same for all TLDs studied.

The response of the same materials to neutrons was also studied. It was found that both η as the relative response (RR) defined in terms of absorbed dose in tissue are different, they depend critically also on the composition. When a TLD contains nuclei like 6Li and 10B, their RR would be rather high. As far as η is concerned, the same tendencies were observed as for charged particles, i.e. when average LET of secondary particles formed in a TLD increases, their η generally decreases.  相似文献   


11.
Human will be sooner or later return to the moon and will eventually travel to the planets near Earth. Space radiation hazards are an important concern for human space flight in deep space where galactic cosmic rays (GCR) and solar energetic particles are dominated and radiation is much stronger than that in LEO (Low Earth Orbit) because in deep space there is no magnetosphere to screen charged particle and no big planet nearby to shadow the spacecraft.Research indicates that the impact of particle radiation on humans depends strongly on the particles' linear energy transfer (LET) and the radiation risk is dominated by high LET radiation. Therefore, radiation research on high LET should be emphasized and conducted systematically so as to make radiation risk as low as reasonably achievable (ALARA) for astronauts.Radiation around the moon can be measured with silicon detectors and/or CR-39 plastic nuclear track detectors (PNTDs). At present stage the silicon detectors are one of the preferred active dosimeters which are sensitive to all LET and CR-39 detectors are the preferred passive dosimeters which are sensitive to high LET (≥5 keV/μm water). CR-39 PNTDs can be used as personal dosimeters for astronauts. Both the LET spectrum and the charge spectrum for charged particles in space can be measured with silicon detectors and CR-39 detectors.Calibrations for a detector system combined with the silicon detectors CRaTER (Cosmic Rays Telescope for the Effects of Radiation) from Boston University and Massachusetts Institute of Technology, and the CR-39 PNTDs from JSC (Johnson Space Center) – SRAG (Space Radiation Analysis Group) were conducted by exposing the detector system to the accelerator generated protons and heavy ions. US space mission for the radiation measurement around the moon using CRaTER was carried out in 2009.Results obtained from the calibration exposures indicate an excellent agreement between LET spectrum and charge spectrum measured with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System).This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.  相似文献   

12.
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent.  相似文献   

13.
Recently, space radiation dosimetry measurements were made by passive and active detectors inside the Spacelab [STS-47 (FMPT): 300km, 57°, STS-65 (IML-2 mission): 300km, 28.5°]. The LET distributions obtained by antioxidant doped CR-39 inside the Spacelab were compared with those measured by the tissue equivalent proportional counter (TEPC) and the real time radiation monitoring device (RRMD) consisting of eight silicon detectors. While both distributions by CR-39 are in good agreement with those obtained by active detectors over the region of LET of several tens to 200 keV/μm, a significant difference in the LET region of smaller than several tens keV/μm is seen. It is considered to be caused by the dip angle dependence of track formation sensitivity in CR-39. The track formation sensitivity for different dip angle were measured for several high heavy energy ions. Using these results, the correction for the dip angle was made for the LET distribution. The corrected result is consistent with the results obtained by active detectors.  相似文献   

14.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

15.
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.  相似文献   

16.
Neutron fluences were measured on LDEF in the low energy (< 1 MeV) and high energy (> 1 MeV) ranges. The low energy detectors used the 6Li(n,)T reaction with Gd foil absorbers to separate thermal (< 0.2 eV) and resonance (0.2 eV−1 MeV) neutron response. High energy detectors contained sets of fission foils (181Ta, 209Bi, 232Th, 238U) with different neutron energy thresholds. The measured neutron fluences together with predicted spectral shapes were used to estimate neutron dose equivalents. The detectors were located in the A0015 and P0006 experiments at the west and Earth sides of LDEF under shielding varying from 1 to 19 g/cm2.

Dose equivalent rates varied from 0.8 to 3.3 μSv/d for the low energy neutrons and from 160 to 390 μSv/d for the high energy neutrons. This compares with TLD measured absorbed dose rates in the range of 1000–3000 μGy/d near these locations and demonstrates that high energy neutrons contribute a significant fraction of the total dose equivalent in LEO.

Comparisons between measurements and calculations were made for high energy neutrons based on fission fragment tracks generated by fission foils at different shielding depths. A simple 1-D slab geometry was used in the calculations. Agreement between measurements and calculations depended on both shielding depth and threshold energy of the fission foils. Differences increased as both shielding and thereshold energy increased. The modeled proton/neutron spectra appeared deficient at high energies. A 3-D model of the experiments is needed to help resolve the differences.  相似文献   


17.
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.  相似文献   

18.
High- and intermediate-energy protons are not able to directly form a track in a CR-39 etch detector (TED). Such detectors, however, can be used for the detection and dosimetry of the beams of these particles through the registration of secondary charged particles with sufficiently high values of linear energy transfer (LET). High-energy protons (72–220 MeV) and Intermediate-energy protons (10–30 MeV) with low LET values ranging from 1.1 down to 0.4 keV/μm and 5.87 down to 2.40 keV/μm, respectively are considered in this study. It seems to be sufficient to create secondary particles, although the LET values are low. This phenomenon can modify the characteristics of the energy transfer process due to these particles, which should be taken into account when such particles are used for radiobiology studies or for radiotherapy. The importance of these secondary particles was investigated experimentally by means of an LET spectrometer based on a chemically etched track detector in which the tracks of the primary protons are not revealed. Experiments were performed with proton beams available at the Nuclear Research Center for Agriculture and Medicine (NRCAM) in Karaj, Iran and at the National Cancer Center (NCC) in Seoul, Korea with protons of primary energies of about 10–30 MeV and 72–220 MeV respectively. The contribution of the secondary particle dose increases as the proton energy decreases. The origin of the secondary particles in interactions with protons having high and intermediate energies due to various nuclear reactions was calculated by the both ALICE and TALYS computer codes. The secondary microdosimetry doses were also calculated by GEANT4 code. There is large discrepancy between experimental and calculated results in low proton energies. It has been verified that there is a good correlation between the experimentally obtained results and the reaction cross sections predicted by ALICE and TALYS codes.  相似文献   

19.
Three types of detectors were used onboard the MIR station during the 28th base expeditions to characterise the radiation field: a linear energy transfer (LET) spectrometer was used to establish the LET spectrum between 7 and 700 keV/micrometers corresponding mostly to secondary charged particles; a set of thermoluminescent detectors was used to characterise the low LET component of the onboard radiation field; and Si-diodes were installed to determine the contribution to the exposure due to fast neutrons. It was found out that the LET spectrum from secondary particles between 7 and 700 KeV/micrometers does not depend on the external radiator; the average quality factors for the region mentioned are about 6.0 with ICRP 26 quality factors and about 6.8 with ICRP 60 quality factors. Both differential and integral LET spectra are presented for some typical cases, not only for particle number but also for the dose characteristics like dose and dose equivalent. The spectra obtained also permitted us to calculate the total doses and dose equivalents due to secondary particles with the LET values between 7 and 700 keV/micrometers. It was found out that these quantities are higher for the case of detectors placed in the less shielded area, both for the LET spectrometer (high LET part) as well as for TLDs measuring the low LET component. Total dosimetric characteristics obtained as a sum of both components mentioned are a little lower than previously reported.  相似文献   

20.
We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号