首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The (14s11p5d) primitive basis set of Dunning for the third-row main group atoms Ga-Kr has been contracted [6s4p1d]. The core functions have been relatively highly contracted while those which represent the valence region have been left uncontracted to maintain flexibility. Calculations with the [6s4p1d] contraction are reported for a variety of molecules involving third-row atoms. This basis set is found to satisfactorily reproduce experimental properties such as geometric configurations, dipole moments, and vibrational frequencies for a range of molecules. Comparisons are made with the performance of the uncontracted basis set. Polarization functions for the contracted basis set are reported and performance of the basis set with and without polarization functions is examined. A relaxation of the [6s4p1d] contraction to [9s6p2d] for higher level evergy calculations is also presented.  相似文献   

2.
Summary A previously proposed procedure including the linked and unlinked contributions due to Triple and Quadruple excitations into a size-consistent SDCI-like model has been applied to HF and F2 single-bond systems. The procedure is a non-iterative approximation to the more general total dressing model, which is based on the intermediate Hamiltonians theory. Three basis sets have been employed: the correlation consistent cc-pVTZ basis, a similar one including 3d1f polarization functions, and another including one set of g polarization functions. Excellent agreement with experiment and high-quality calculations is obtained for both equilibrium distances and spectroscopic constants. The possibilities of the method in treating single-bond breaking are also demonstrated. Finally, the Linked and Non-Linked contributions from Triple and Quadruple excitations are analysed separately and it is suggested that the addition of the linked triples to the size-consistent SDCI is sufficient to have quantitatively correct spectroscopic properties in going from the size-consistent SDCI to nearly experimental values.  相似文献   

3.
Separate optimized s and p bond functions (BFs) were added to the corresponding Dunning basis sets (11s,6p15s) → (5s,4p13s) for the four hydrides. Properties calculated with these basis sets are quasi-identical to those obtained with conventional polarization functions (dlp). The computer time ratios found are: t(BF)/t(dlp) = 12 for UHF calculations, and 23 for MC SCF calculations.  相似文献   

4.
We report five minimal-type contracted Gaussian-type function (CGTF) basis sets of the second-row atoms, Na – Ar, for molecular applications. Three of the present CGTF sets are revised versions of those given by Huzinaga and co-workers and the other two are newly developed for more accurate calculations. Practical utility and improved reliability of the present basis sets, augmented by polarization functions, are confirmed by test calculations on the P atom and P2 molecule both at the self-consistent field (SCF) and configuration interaction (CI) levels. Received: 10 February 1997 / Accepted: 23 April 1997  相似文献   

5.
The CO, CO2, CS, CIF, and SO2 molecules were used to test the dependence of supplementary d and f function exponents to changes in bond lengths and bond angles in MO calculations utilizing Gaussian basis sets in Hartree–Fock and Moller–Plesset calculations. Using Dunning–Hay double zeta basis sets, optimizations were performed at internuclear separations from 100–200 pm and beyond. The energy cost of not reoptimizing d function exponents when bonds are stretched or compressed is much smaller for correlated calculations than for those at the Hartree–Fock level and is greatest at the lower end of the range of internuclear distances. The problem is much less serious at all levels when multiple sets of d functions are used. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
 Using established methods based on correlated atomic natural orbitals (ANOs), sets of contracted polarization functions are derived for use in calculations of atomic and molecular electrical properties (especially electric moments, dipole polarizabilities and related property hypersurfaces). Through test calculations on Ne, Ar, NH3 and CO2, these polarization functions are shown to reproduce the accuracy of larger basis sets, to incorporate dynamical electron correlation effects and are economical to use in conjunction with sophisticated electron-correlation treatments. We also show how triple-zeta polarized ANO and double-zeta polarized ANO basis sets are constructed from these contracted polarization functions for use in the calculation of reliable zero-point vibrational averages of electrical properties. Received: 20 December 1999 / Accepted: 15 February 2000 / Published online: 12 May 2000  相似文献   

7.
Nonempirical quantum chemical method Hartree–Fock–Roothan LCAO SCF MO in a two-exponent Dunning basis with the use of an extended set of Gaussian functions by Huzinaga–Dunning with consideration of electron correlation according to the Meller–Plesset theory of excitations of the second order was used to study monohydrates of Li+, Na+, K+, and HCOO? ions. The indicated basis was supplemented with polarization functions of d-type on the O atom and of p-type on the hydrogen atom as well as with diffusion functions of p-type on the oxygen atom. It has been found that binding energies of the water molecule with Li+, Na+ appeared to be higher and with K+ lower than with HCOO? · H2O. Potential curve shapes of K+ + H2O and HCOO? + H2O reactions are shown to be similar. The molecular mechanism of K+ channel selectivity of an excitable membrane is explained on the basis of the obtained calculations.  相似文献   

8.
Energy optimization calculations have been carried out to determine the variability of optimum p, d, and f polarization function exponents in molecules containing first- and second-row elements and in normal valency and hypercoordinate species. Optimum exponents were determined for single sets of higher-order functions at both Hartree–Fock and correlated (Moller–Plesset) levels of theory using the Dunning–Hay double zeta and the McLean–Chandler triple zeta basis sets. More detailed calculations were used to test the response to nonoptimum d and f function exponents of the total energy, the optimum geometry, and harmonic stretching frequencies. The variability in optimum exponents and the size of the energy penalties incurred by adopting nonoptimum values reduces the utility of standard exponents for p, d, and f polarization functions. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The iterative difference-dedicated CI method (IDDCI) has been applied to determine excitation energies in small systems for which benchmark FCI and other high-level calculations exist. Transitions to excited singlet and triplet states in Be and vertical transitions in CH+, BH and CH2 are reported. The deviations from FCI results are lower than 0.1 eV and compare advantageously with SDCI including size-consistency corrections, (SC)2SDCI, and with coupled cluster calculations including the effect of triples, especially for the states which have a predominant double excitation character. The IDDCI procedure has been speeded up by using smaller subspaces for optimizing the molecular orbitals. Received: 17 January 1997 / Accepted: 31 July 1997  相似文献   

10.
The new contracted Gaussian-type orbitals (CGTO s) for molecular calculations have been developed from Li to Ne. The CGTO s are minimal type, i.e. composed of two s-type CGTO s, s1, s2, and one p-type CGTO , p1. They are new family of CGTO s given by Tatewaki and Huzinaga, and others. In the previous works three primitive GTO s are used for s2, which is the main part of the 2s orbital, whereas four primitive GTO s are employed in the present work. The sets generated are [54/5], [64/5], [64/6], [74/6], and [74/7]. In almost all the cases the errors in the 2s and 2p orbital energies are smaller than those of DZ . The resulting 2s orbitals are close to the orbitals of the uncontracted GTO sets, (13/n) and (14/n) of Duijneveldt. It is found that the 2s and 2p orbitals given by [64/6], [74/6], and [74/7] are satisfactorily near to those of Hartree–Fock. The basis sets [54/5], [64/6], and [74/7] are applied to the N2 molecule in the split valence forms of [5211/311], [6211/3111], and [7211/4111]. Adding the d-type polarization functions from one through three, the quality of the basis sets has been examined. All of the three sets show good behavior and the sets augmented with three d-type polarization functions give almost entirely the same results as the very extended basis set.  相似文献   

11.
The reactions F + H2 → HF + H, HF → H + F, F → F+ + e? and F + e? → F? were used as simple test cases to assess the additivity of basis set effects on reaction energetics computed at the MP4 level. The 6-31G and 6-311G basis sets were augmented with 1, 2, and 3 sets of polarization functions, higher angular momentum polarization functions, and diffuse functions (27 basis sets from 6-31Gd, p) to 6-31 ++ G(3df, 3pd) and likewise for the 6-311G series). For both series substantial nonadditivity was found between diffuse functions on the heavy atom and multiple polarization functions (e.g., 6-31 + G(3d, 3p) vs. 6-31 + G(d, p) and 6-31G(3d, 3p)). For the 6-311G series there is an extra nonadditivity between d functions on hydrogen and multiple polarization functions. Provided that these interactions are taken into account, the remaining basis set effects are additive to within ±0.5 kcal/mol for the reactions considered. Large basis set MP4 calculations can also be estimated to within ±0.5 kcal/mol using MP2 calculations, est. EMP4(6-31 ++ G(3df, 3pd)) ≈ EMP4(6-31G(d, p)) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31G(d, p)) or EMP4(6-31 + G(d, p) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31 + G(d, p)) and likewise for the 6-311G series.  相似文献   

12.
Full CI calculations of first- and second-order properties are presented to provide benchmark results for comparisons with other methods, such as multireference CI(MRCI). The full CI(FCI) polarizability of F is computed using a double zeta plus polarization plus diffuse basis set. These FCI results are compared to those obtained at other levels of theory; the CASSCF/MRCI with Davidson correction results are in excellent agreement with the FCI. Differences between the polarizability results computed as a (numerical) second derivative of the energy or as an induced dipole moment are also discussed. FCI calculations are presented for the dipole moment and polarizability of HF, CH2 and SiH2 using a DZP basis set. Again, the CASSCF/MRCI values are in excellent agreement with the FCI results, whereas SDCI values, whether computed as an expectation value or as an energy derivative, are much worse. The results obtained using the CPF approach are in considerably better agreement with the FCI results than SDCI, and are similar in quality to the SDCI energy derivative results with the inclusion of Davidson's correction.  相似文献   

13.
The isotropic (aiso) and dipolar (Adip) hyperfine coupling constants of 19F were obtained from MRD -CI wave functions using a variety of basis sets. In series I, increasing numbers of d functions were added to a 5s4p contracted Huzinaga/Dunning basis. In series II, the 5s3p basis set was uncontracted in several steps until 9s5p was reached, to which were added from one to three d-polarization functions. CI parameters (selection thresholds and the number of reference configurations) were also varied. A study of the R dependence of aiso and Adip was performed. The best values obtained at Re are 260 G for aiso and 308 G for Adip, compared with experimental values of about 280 G for aiso and 320 G for Adip.  相似文献   

14.
Pseudopotentials and valence basis sets to be used in calculations for organometallic compounds of zinc and magnesium have been tested in calculations for the M(CH3)n (M = Zn, Mg; n = 1,2) molecules. Valence correlation effects are treated at the SDCI and CEPA levels. The capability of a polarization potential on zinc to account for the valence shell contracting effect of core valence correlation is studied. Properties considered are geometries, force constants, Mulliken populations, ionization potentials, atomization, and binding energies. Differences in bonding between the two dimethyl compounds are discussed.  相似文献   

15.
The potential functions of internal rotation around the Csp2-Se bond in selenoanisole were ob- tained by quantum-chemical calculations in the approximations HF/3-21G(d), HF/6-31G(d), MP2(f)/6-31G(d), and B3LYP/6-31G(d). The calculations were performed in the range of variation of the torsion angle (between the planes of the benzene ring and Csp2-Se-Csp3 bonds) from 0° to 90° with 15° step. The energy minimum is in the region of the orthogonal conformation ( 90°), and the energy maximum, in the region of the planar form ( 0°). The rotation barriers (kJ mol- 1) are as follows: HF/3-21G(d), 9.20; HF/6-31G(d), 13.13; MP2(f)/6-31G(d), 10.25; and B3LYP/6-31G(d), 6.41. The geometric parameters, Koopmans ionization potentials, and dipole moments are given. The energies, degrees of hybridization, populations of the lone electron pairs of Se, energies of their interaction with the antibonding * orbitals of the benzene ring, and electron density distributions were determined in terms of the natural bond orbital approach.  相似文献   

16.
The generator coordinate Hartree–Fock (GCHF) method is employed as a criterion for the selection of a 18s12p Gaussian basis for the atoms Na–Ar. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. The extended basis is then contracted to (10s6p) by a standard procedure and in combination with the previously contracted (7s5p) Gaussian basis for the atoms Li–Ne is enriched with polarization functions. This basis is tested for AlF, SiO, PN, BCl, and P2. The properties of interest were HF total energies, MP2 dipolar moments, bond distances, and dissociation energies. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 63: 927–934, 1997  相似文献   

17.
Summary Theoretical calculations at the coupled cluster level of theory including all single, double and perturbative triple excitations, CCSD(T), are carried out for the3 ground state of GaAs. Employing a (7s5p3d1f) basis set, the theoretical predictions forr e (2.560 Å), e (217 cm–1),D e (1.84 eV), and IP (7.80 eV), are in good agreement with recent experimental results. The importance of includingf-type polarization functions in the basis set and the effect of correlating 3d electrons are discussed in detail.  相似文献   

18.
The performance of Atomic Natural Orbital (ANO) basis sets for calculations involving nonempirical core pseudopotentials has been studied by comparing the results for atomic and molecular nitrogen obtained using contracted ANO basis sets with those obtained using both the primitive set and a segmented one. The primitive set has been optimized at the SCF level for atomic N treated as a five-electron pseudo-atom, and consists of 7s and 7p primitive GTOs supplemented by 2d and 1f GTOs optimized at the CI level. From this primitive set three contracted [3s 3p 2d 1f] sets have been obtained. The first one has been derived from the ANOs of the neutral atom, the second has been obtained from an averaged density matrix and the third one is a segmented set. For the atom, the segmented set gives a zero contraction error at the SCF level as it must be in valence-only calculations. The ANO basis sets show some small contraction error at the SCF level but perform better in CI calculations. However, for the diatomic N2 molecule the ANO basis sets exhibit a rather large contraction error in the calculated SCF energy. A detailed analysis of the origin of this error is reported, which shows that the conventional strategy used to derive ANO basis sets does not work very well when pseudopotentials are involved.  相似文献   

19.
The recently developed Gaussian basis functions [2] were used in calculations on the ground electronic states of molecules containing transition-metal atoms: ScF3, TiCl4, ZrCl4, Cr(CO)6, Ni(CO)4, CuF, CuCl, Zn(CH3)2, and Cd(CH3)2. The usefulness of minimal basis sets, the importance of splitting of the valence part of the minimal basis sets, the role of the triple splitting of the d-block functions, and the need for p-, d-, and f-type polarization functions were discussed in the context of the geometrical structure and the firstorder electronic properties of the transition-metal atom compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号