首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
In this paper, a conserved Manna model is constructed and studied on Barabasi–Albert scale-free network with degree exponent γ = 3. Numerically I show that the system undergoes an absorbing state phase transition when the particle density is varied. Such a phase transition is characterized by measuring several critical exponents associated with the critical behaviour of the model. It has been found that the critical exponents exhibit mean field values of directed percolation. At the critical point, the spreading exponents have also been estimated. They satisfy the usual scaling relations. The effect of various initial conditions has been investigated and the result found to be independent of initial conditions, contrary to the fact that critical behaviour of such model highly depends on initial conditions when studied on regular lattice. The study confirms that though the Manna model in the lower dimensions exhibits different critical behavior other than DP, in the scale-free network it exhibits similar mean field result of DP class.  相似文献   

2.
Phase transitions from an active into an absorbing, inactive state are generically described by the critical exponents of directed percolation (DP), with upper critical dimension d(c)=4. In the framework of single-species reaction-diffusion systems, this universality class is realized by the combined processes A-->A+A, A+A-->A, and A-->0. We study a hierarchy of such DP processes for particle species A,B,..., unidirectionally coupled via the reactions A-->B, ...(with rates mu(AB),...). When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents beta(i) which are markedly reduced at each hierarchy level i> or =2. This scenario can be understood on the basis of the mean-field rate equations, which yield beta(i)=1/2(i-1) at the multicritical point. Using field-theoretic renormalization-group techniques in d=4-epsilon dimensions, we identify a new crossover exponent phi, and compute phi=1+O(epsilon(2)) in the multicritical regime (for small mu(AB)) of the second hierarchy level. In the active phase, we calculate the fluctuation correction to the density exponent on the second hierarchy level, beta(2)=1/2-epsilon/8+O(epsilon(2)). Outside the multicritical region, we discuss the crossover to ordinary DP behavior, with the density exponent beta(1)=1-epsilon/6+O(epsilon(2)). Monte Carlo simulations are then employed to confirm the crossover scenario, and to determine the values for the new scaling exponents in dimensions d< or =3, including the critical initial slip exponent. Our theory is connected to specific classes of growth processes and to certain cellular automata, and the above ideas are also applied to unidirectionally coupled pair annihilation processes. We also discuss some technical as well as conceptual problems of the loop expansion, and suggest some possible interpretations of these difficulties.  相似文献   

3.
NEERAJ KUMAR KAMAL 《Pramana》2012,78(5):705-718
We describe a simple model mimicking diffusively coupled chemical micro-oscillators. We characterize the rich variety of dynamical states emerging from the model under variation of time delay in coupling, coupling strength and boundary conditions. The spatiotemporal patterns obtained include clustering, mixed dynamics, inhomogeneous steady states and amplitude death. Further, under delay in coupling, the model yields transitions from phase to antiphase oscillations, reminiscent of that observed in experiments [M Toiya et al, J. Chem. Lett. 1, 1241 (2010)].  相似文献   

4.
5.
We study the surface critical behavior of branching-annihilating random walks with an even number of offspring (BARW) and directed percolation (DP) using a variety of theoretical techniques. Above the upper critical dimensions d(c), with d(c)=4 (DP) and d(c)=2 (BARW), we use mean field-theory to analyze the surface phase diagrams using the standard classification into ordinary, special, surface, and extraordinary transitions. For the case of BARW, at or below the upper critical dimension d相似文献   

6.
A method for determining the specific gain under conditions of stimulated Brillouin scattering (SBS) is proposed, which is based on measuring the amplification of a Stokes beam with an inhomogeneous spatial intensity distribution in a sample used as an SBS amplifier. Under the same experimental conditions, the values of the SBS gain are obtained for the new phosphate glass KGSS 0180 (g = 1.9 cm/GW) and for the GLS 22 (g = 1.4 cm/GW), K8 (g = 1.3 cm/GW), and KU2 (g = 1.5 cm/GW) glasses, which are widely used in laser systems. The SBS frequency shift of radiation with a wavelength of 1.054 μm (14.57±0.02 GHz) and the hypersonic velocity (5030 m/s) have been determined for the KGSS 0180 glass by optical heterodyning. The relaxation time of hypersound in the noted media is estimated.  相似文献   

7.
We study Domany-Kinzel cellular automata on small-world network. Every link on a one dimensional chain is rewired and coupled with any node with probability p. We observe that, the introduction of long-range interactions does not remove the critical character of the model and the system still exhibits a well-defined phase transition to absorbing state. In case of directed percolation (DP), we observe a very anomalous behavior as a function of size. The system shows long lived metastable states and a jump in order parameter. This jump vanishes in thermodynamic limit and we recover second-order transition. The critical exponents are not equal to the mean-field values even for large p. However, for compact directed percolation(CDP), the critical exponents reach their mean-field values even for small p.  相似文献   

8.
In this work, we use a refined entropic sampling technique based on the Wang-Landau method to study the spin- 1/2 Baxter-Wu model. We adopt the total magnetization as the order parameter and, as a result, do not divide the system into three sub-lattices. The static critical exponents were determined as α = 0.6697(54), β = 0.0813(67), γ = 1.1772(33), and ν = 0.6574(61). The estimate for the critical temperature was Tc = 2.26924(2). We compare the present results with those obtained from other well-established approaches, and we find a very good closeness with the exact values, besides the high precision reached for the critical temperature.  相似文献   

9.
Critical properties of systems exhibiting phase transitions into phases with infinite numbers of absorbing states are studied. We analyze a non-Markovian Langevin equation recently proposed to describe the critical behavior of such systems, and also introduce and study a non-Markovian discrete model, which is argued to present the same critical features. On the basis of mean-field analysis, Monte Carlo simulations, and theoretical arguments, we conclude that the phenomenology of the non-Markovian models closely parallels that of systems with many absorbing states in one and two dimensions. The bulk or static critical properties of these systems fall in the directed percolation (DP) universality class. By contrast, the critical properties associated with the spread of an initially localized seed exhibit a more complex behavior: Depending on parameter values they can, both in one and two dimensions, fall either in the dynamical percolation or DP universality class, or else exhibit apparently nonuniversal exponents. In contrast to previous results, however, the nonuniversal exponents in 2D are found to satisfy a scaling law which implies that a particular linear combination of them is universal and assumes DP values. These results demonstrate the efficacy of the non-Markovian approach for understanding systems with many absorbing states, which are difficult to analyze in their original microscopic formulation.  相似文献   

10.
We show that the probability, P0(l), that the height of a fluctuating (d+1)-dimensional interface in its steady state stays above its initial value up to a distance l, along any linear cut in the d-dimensional space, decays as P0(l) approximately l(theta). Here straight theta is a "spatial" persistence exponent, and takes different values, straight theta(s) or straight theta(0), depending on how the point from which l is measured is specified. These exponents are shown to map onto corresponding temporal persistence exponents for a generalized d = 1 random-walk equation. The exponent straight theta(0) is nontrivial even for Gaussian interfaces.  相似文献   

11.
We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence of a transition analogous to the Theta transition of polymers. Above a critical attractive interaction u(c), the walk collapses and the exponents nu and k, characterizing the scaling with time t of the mean square end-to-end distance approximately t(2nu) and the average number of visited sites approximately t(k), are universal and given by nu=1/(d+1) and k=d/(d+1). Below u(c), the walk swells and the exponents are as with no interaction, i.e., nu=1/2 for all d, k=1/2 for d=1 and k=1 for d>/=2. At u(c), the exponents are found to be in a different universality class.  相似文献   

12.
Conformal invariance constrains the form of correlation functions near a free surface. In two dimensions, for a wide class of models, it completely determines the correlation functions at the critical point, and yields the exact values of the surface critical exponents. They are related to the bulk exponents in a non-trivial way. For the Q-state Potts model (0 Q 4) we find η<|; = 2/(3v − 1), and for the O(N) model (−2 N 2), η<|; = (2v − 1)/(4v − 1).  相似文献   

13.
In this paper we proposed a spatial modulated two-variable Martiel-Goldbeter model to describe the complex spatiotemporal disorder dynamical behavior during development of Dictyostelium discoideum strain FR17. As the nonlinear modulated parameter A and diffusion coefficient E varied, the system shows: 1) multiperiodic phase, 2) co-existence phase of chaotic and multi-periodic state, 3) spatiotemporal chaotic phase, 4) co-existence phase of chaotic, multi-periodic and steady state, and 5) co-existence phase of chaotic and steady state. These phases can be described by spatiotemporal power spectra, pattern distribution function and Lyapunov spectra. We believed that the complex spatiotemporal disorder dynamical behavior during development of Dictyosteliurn discoideum strain FR17 is a spatiotemporal chaotic state.  相似文献   

14.
15.
丁成祥  姚桂元  李崧  邓友金  郭文安 《中国物理 B》2011,20(7):70504-070504
We investigate the Eulerian bond-cubic model on the square lattice by means of Monte Carlo simulations,using an efficient cluster algorithm and a finite-size scaling analysis.The critical points and four critical exponents of the model are determined for several values of n.Two of the exponents are fractal dimensions,which are obtained numerically for the first time.Our results are consistent with the Coulomb gas predictions for the critical O(n) branch for n < 2 and the results obtained by previous transfer matrix calculations.For n=2,we find that the thermal exponent,the magnetic exponent and the fractal dimension of the largest critical Eulerian bond component are different from those of the critical O(2) loop model.These results confirm that the cubic anisotropy is marginal at n=2 but irrelevant for n < 2.  相似文献   

16.
We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant \({J_{ij}(\beta)}\) for the edge \({ij}\) on the complete graph is given by \({J_{ij}(\beta)=\beta w_iw_j/( {\sum_{k\in[N]}w_k})}\). We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature \({\beta}\) replaced by \({\sinh(\beta)}\) ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights \({(w_i)_{i\in[N]}}\) are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent \({\tau}\) with \({\tau\in(3,5)}\), then the critical exponents depend sensitively on \({\tau}\). In addition, at criticality, the total spin \({S_N}\) satisfies that \({S_N/N^{(\tau-2)/(\tau-1)}}\) converges in law to some limiting random variable whose distribution we explicitly characterize.  相似文献   

17.
Through using the methods of finite-size effect and short time dynamic scaling, we study the critical behavior of parasitic disease spreading process in a diffusive population mediated by a static vector environment. Through comprehensive analysis of parasitic disease spreading we find that this model presents a dynamical phase transition from disease-free state to endemic state with a finite population density. We determine the critical population density, above which the system reaches an epidemic spreading stationary state. We also perform a scaling analysis to determine the order parameter and critical relaxation exponents. The results show that the model does not belong to the usual directed percolation universality class and is compatible with the class of directed percolation with diffusive and conserved fields.  相似文献   

18.
19.
We argue that while fluctuating fronts propagating into an unstable state should be in the standard Kardar-Parisi-Zhang (KPZ) universality class when they are pushed, they should not when they are pulled: The 1/t velocity relaxation of deterministic pulled fronts makes it unlikely that the KPZ equation is their proper effective long-wavelength low-frequency theory. Simulations in 2D confirm the proposed scenario, and yield exponents beta approximately 0.29+/-0.01, zeta approximately 0.40+/-0.02 for fluctuating pulled fronts, instead of the (1+1)D KPZ values beta = 1/3, zeta = 1/2. Our value of beta is consistent with an earlier result of Riordan et al., and with a recent conjecture that the exponents are the (2+1)D KPZ values.  相似文献   

20.
We study the thermodynamics of a quantum system interacting with different baths in the repeated interaction framework. In an appropriate limit, the evolution takes the Lindblad form and the corresponding thermodynamic quantities are determined by the state of the full system plus baths. We identify conditions under which the thermodynamics of the open system can be described only by system properties and find a quantum local detailed balance condition with respect to an equilibrium state that may not be a Gibbs state. The three-qubit refrigerator introduced in Linden et al. [Phys. Rev. Lett. 105, 130401 (2010)] and Skrzypczyk et al. [J. Phys. A: Math. Theory 44, 492002 (2011)] is an example of such a system. From a repeated interaction microscopic model we derive the Lindblad equation that describes its dynamics and discuss its thermodynamic properties for arbitrary values of the internal coupling between the qubits. We find that external power (proportional to the internal coupling strength) is required to bring the system to its steady state, but once there, it works autonomously as discussed in Linden et al. [Phys. Rev. Lett. 105, 130401 (2010)] and Skrzypczyk et al. [J. Phys. A: Math. Theory 44, 492002 (2011)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号