首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications of selective, multiselective, and semiselective pulses with pulsed field gradients are described. The use of multiple-selective excitation and PFGs for coherence selection in the selective one-dimensional experiments results in spectra devoid of artifacts and with remarkable solvent suppression. Multiple-selective excitation is also employed in an experiment called Multigate, a variant of the well-known WATERGATE experiment, in order to achieve multiple solvent signal suppression. Finally, new pulse sequences are shown for recording pure absorption ω1semiselective PFG NOESY, ROESY, and TOCSY experiments. The merits and limitations of these experiments are discussed.  相似文献   

2.
对结合脉冲梯度场的选择激发技术在溶剂峰抑制中的四种可行序列进行比较,实验表明非对称的双梯度自旋回波序列在谱图的相位特性和溶剂峰抑制效果两方面均是最佳的方案,并将其推广应用到溶剂峰抑制的gCOSY实验中,获得较理想的溶剂峰抑制效果.  相似文献   

3.
Excitation sculpting (T-L. Hwang and A. J. Shaka, J. Magn. Reson. A 112, 275-279 (1995)) used for solvent suppression and selective excitation in NMR bases its success on the ability to remove baseline and phase errors created by the application of selective rf pulses. This is achieved by the application of two pulsed field gradient (PFG) echoes in sequence. It is essential that the two pairs of PFGs select the coherence transfer steps independently of each other, which is conveniently achieved if they are applied along orthogonal spatial axes. Here, the much more common case where both PFG pairs must be applied along a single axis is investigated. This is shown to lead to complications for certain ratios of PFG strengths. The original theory of excitation sculpting is restated in the spherical basis for convenience. Some of the effects can only be explained by invoking the dipolar demagnetizing field.  相似文献   

4.
An improved self-compensating pulsed field gradient (PFG) technique that combines antiphase gradient pairs with broadband frequency-modulated 180° pulses is proposed. The antiphase gradient pairs lead to superb system recovery. In addition, evolution under chemical shift and heteronuclearJcoupling are refocused during the PFG, making it appear effectively instantaneous. This new approach makes it possible to obtain high-resolutionphase-sensitive2D spectra for the PFG version of many experiments such as COSY, DQF-COSY, and HSQC without adding extra compensating delays or pulses. While reasonable suppression of unwanted magnetization is achieved, this method also gives satisfactory retention of desired signals. As a bonus, the field-frequency lock is not perturbed during the experiments.  相似文献   

5.
By evaluating the spin echo attenuation for a generalized 13-interval PFG NMR sequence consisting of pulsed field gradients with four different effective intensities (F(p/r) and G(p/r)), magic pulsed field gradient (MPFG) ratios for the prepare (G(p)/F(p)) and the read (G(r)/F(r)) interval are derived, which suppress the cross term between background field gradients and the pulsed field gradients even in the cases where the background field gradients may change during the z-store interval of the pulse sequence. These MPFG ratios depend only on the timing of the pulsed gradients in the pulse sequence and allow a convenient experimental approach to background gradient suppression in NMR diffusion studies with heterogeneous systems, where the local properties of the (internal) background gradients are often unknown. If the pulsed field gradients are centered in the tau-intervals between the pi and pi/2 rf pulses, these two MPFG ratios coincide to eta=G(p/r)/F(p/r)=1-8/[1+(1/3)(delta/tau)(2)]. Since the width of the pulsed field gradients (delta) is bounded by 0< or =delta< or =tau, eta can only be in the range of 5< or =-eta< or =7. The predicted suppression of the unwanted cross terms is demonstrated experimentally using time-dependent external gradients which are controlled in the NMR experiment as well as spatially dependent internal background gradients generated by the magnetic properties of the sample itself. The theoretical and experimental results confirm and extend the approach of Sun et al. (J. Magn. Reson. 161 (2003) 168), who recently introduced a 13-interval type PFG NMR sequence with two asymmetric pulsed magnetic field gradients suitable to suppress unwanted cross terms with spatially dependent background field gradients.  相似文献   

6.
对结合脉冲梯度场的选择激发技术在溶剂峰抑制中的四种可行序列进行比较,实验表明非对称的双梯度自旋回波序列在谱图的相位特性和溶剂峰抑制效果两方面均是最佳的方案,并将其推广应用到溶剂峰抑制的gCOSY实验中,获得较理想的溶剂峰抑制效果  相似文献   

7.
In a recent publication we presented a method to obtain highly resolved NMR spectra in the presence of an inhomogeneous B(0) field with the help of a matched RF gradient. If RF gradient pulses are combined with "ideal" 90 degrees pulses to form inhomogeneous z rotation pulses, the line broadening caused by the B(0) gradient can be refocused, while the full chemical shift information is maintained. This approach is of potential use for NMR spectroscopy in an inhomogeneous magnetic field produced by an "ex-situ" surface spectrometer. In this contribution, we extend this method toward two-dimensional spectroscopy with high resolution in one or both dimensions. Line narrowing in the indirect dimension can be achieved by two types of nutation echoes, thus leading to depth-sensitive NMR spectra with full chemical shift information. If the nutation echo in the indirect dimension is combined with a stroboscopic acquisition using inhomogeneous z-rotation pulses, highly resolved two-dimensional correlation spectra can be obtained in matched field gradients. Finally, we demonstrate that an INEPT coherence transfer from proton to carbon spins is possible in inhomogeneous B(0) fields. Thus, it is possible to obtain one-dimensional (13)C NMR spectra with increased sensitivity and two-dimensional HETCOR spectra in the presence of B(0) gradients of 0.4 mT/cm. These schemes may be of some value for ex-situ NMR analysis of materials and biological systems.  相似文献   

8.
The NMR relaxation properties of hydrating blast-furnace slag cements have recently been shown to be dominated by the effect of water self-diffusion in internal magnetic field gradients in the pastes. While this was suggested on the basis of NMR relaxometry and magnetic susceptibility data, we report here the results from first direct studies of the water self-diffusion in the hydrating paste using a specialized PFG sequence and very intensive magnetic field gradient pulses.  相似文献   

9.
In order to improve the fat suppression performance of in vivo (13)C-MRS operating at 3.0 Tesla, a phantom model study was conducted using a combination of two fat suppression techniques; a set of pulses for frequency (chemical shift) selective suppression (CHESS), and spatial saturation (SAT). By optimizing the slab thickness for SAT and the irradiation bandwidth for CHESS, the signals of the -(13)CH(3) peak at 49 ppm and the -(13)CH(2)- peak at 26 ppm simulating fat components were suppressed to 5% and 19%, respectively. Combination of these two fat suppression pulses achieved a 53% increase of the height ratio of the glucose C1β peak compared with the sum of all other peaks, indicating better sensitivity for glucose signal detection. This method will be applicable for in vivo (13)C-MRS by additional adjustment with the in vivo relaxation times of the metabolites.  相似文献   

10.
Pulsed field gradient (PFG) NMR diffusion measurements in heterogeneous media may lead to erroneous results due to the disturbing influence of internal magnetic field gradients. Here, we present a simple theoretical model which allows one to interpret data obtained by stimulated spin echo PFG NMR in the presence of spatially varying internal field gradients. Using the results of this theory, the genuine self-diffusion coefficients in heterogeneous media may be extrapolated from the dependence of the apparent diffusivities on the dephasing time of the simulated echo PFG NMR sequence. Experimental evidence that such extrapolation yields satisfactory results for self-diffusion of hexadecane in natural sediments (sand) and of n-octanol in doped MgO pastes is provided.  相似文献   

11.
We analytically compute the apparent diffusion coefficient D(app) for an open restricted geometry, such as an extended porous medium, for the case of a pulsed-field gradient (PFG) experiment with finite-width pulses. In the short- and long-time limits, we give explicit, model-independent expressions that correct for the finite duration of the pulses and can be used to extract the pore surface-to-volume (S/V) ratio as well as the tortuosity. For all times, we compute D(app) using a well-established model form of the actual time-dependent diffusion coefficient D(t) that can be obtained from an ideal narrow-pulse PFG. We compare D(app) and D(t) and find that, regardless of pulse widths and geometry-dependent parameters, the two quantities deviate by less than 20%. These results are in sharp contrast with the studies on closed geometries [J. Magn. Reson. A 117 (1995) 209], where the effects of finite gradient-pulse widths are large. The analytical results presented here can be easily adapted for different pulse protocols and time sequences.  相似文献   

12.
用Laplace变换方法求出了Bloch方程在各种不同物理条件下的解析解,这些解析解物理图象清楚,便于分析,克服了数值解中的困难.解析解和相应的结论已用于水峰抑制和特形脉冲的设计.对于水峰抑制,本文指出抑制效果是有极限的,并给出了抑制效果的极限以及最佳抑制时间的近似计算公式.在特形脉冲的模拟过程中,我们发现只有同时考虑全部四类解析解,才能得到正确的模拟结果,另外,模拟还表明,要在保持激励频谱形状不变的条件下,得到不同倾倒角的脉冲必须改变激励脉冲的形状,相应实验的结果与我们给出的上述结论完全吻合。  相似文献   

13.
从转动矩阵理论与实验两方面研究了结合脉冲梯度场的选择性形状脉冲的相位特性,结果表明:单梯度自旋回波(SPFGSE)和双梯度自旋回波(DPFGSE)对于对称和反对称的形状脉冲,都能很好地克服其相位畸变;而双梯度自旋回波(DPFGSE)对于非对称的形状脉冲也能克服其相位畸变;双选择性单梯度自旋回波无法克服形状脉冲的相位畸变.  相似文献   

14.
Pulsed field gradient (PFG) nuclear magnetic resonance (NMR) is well established as a tool for determining emulsion droplet-size distributions via measurement of restricted self-diffusion. Most measurements made to date have not been spatially resolved, but have measured an average size distribution for a certain volume of emulsion. This paper demonstrates a rapid method of performing spatially resolved, restricted diffusion measurements, which enables emulsion droplet sizing to be spatially resolved as a function of radius in cylindrical geometries or pipes. This is achieved by the use of an Abel transform. The technique is demonstrated in various annular systems containing two emulsions, with different droplet-size distributions, and/or a pure fluid. It is also shown that by modifying the pulse sequence by the inclusion of flow-compensating magnetic field gradients, the technique can measure spatially resolved droplet-size distributions in flowing emulsions, with potential applications in spatially resolved on-line droplet-size analysis.  相似文献   

15.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

16.
Pulsed gradient simulated-echo (PGSE) NMR diffusion measurements provide a facile and accurate means for determining the self-diffusion coefficients for molecules over a wide range of sizes and conditions. The measurement of diffusion in solvents of low intrinsic viscosity is particularly challenging, due to the persistent presence of convection. Although convection can occur in most solvent systems at elevated temperatures, in lower viscosity solvents (e.g., short chain alkanes), convection may manifest itself even at ambient laboratory temperatures. In most circumstances, solvent suppression will also be required, and for solvents that have multiple resonances, effective suppression can likewise represent a substantial challenge. In this article, we report an NMR experiment that combines a double-stimulated echo PFG approach with a WET-based solvent suppression scheme that effectively and simultaneously address the issues of dynamic range and the deleterious effects of convection. The experiment described will be of general benefit to studies aimed at the characterization of diffusion of single molecules directly dissolved in low-viscosity solvents, and should also be of substantial utility in studies of supramolecular assemblies such as reverse-micelles dissolved in apolar solvents.  相似文献   

17.
In cell and tissue samples, water is normally three orders of magnitude more abundant than other metabolites. Thus, water suppression is required in the acquisition of NMR spectra to overcome the dynamic range problem and to recover metabolites that overlap with the broad baseline of the strong water resonance. However, the heterogeneous cellular environment often complicates water suppression and the strong coupling of water to membrane lipids interferes with the NMR detection of membrane associated lipid components. The widely used water suppression techniques including presaturation and double pulsed field gradient selective echo result in more than a 70% reduction in membrane associated lipid components in proton spectra of cells and tissues compared to proton spectra acquired in the absence of water suppression. A water suppression technique based on the combination of selective excitation pulses and pulsed field gradients is proposed to use in the acquisition of high resolution MAS NMR spectra of tissue specimens and cell samples. This pulse sequence methodology enables efficient water suppression for intact cells and tissue samples and eliminates signal loss from cellular metabolites.  相似文献   

18.
PFG NMR methods are frequently used as a means of probing both coherent and incoherent molecular motions of fluids contained within heterogeneous porous media. The time scale over which molecular displacements can be probed in a conventional PFG NMR experiment is limited by the relaxation characteristics of (1)H - the nucleus that is typically observed. In multiphase systems, due to its sensitivity to susceptibility gradients and interactions with surfaces,(1)H signal is frequently characterized by rapid T(1) and T(2) relaxation. In this work, a heteronuclear approach to PFG NMR is demonstrated which allows the study of molecular displacement over extended time scales (and, consequently, length scales) by exploiting the longer relaxation time of (13)C. The method presented employs the DEPT technique of polarization transfer in order to enhance both the sensitivity and efficiency of (13)C detection. This hybrid coherence transfer PFG technique has been used to acquire displacement propagators for flow through a bead pack with an observation time of up to 35 s.  相似文献   

19.
Pulsed gradient spin echo (PGSE) experiments can be used to measure the probability distribution of molecular displacements. In homogeneous samples this reports on the molecular diffusion coefficient, and in heterogeneous samples, such as porous media and biological tissue, such measurements provide information about the sample's morphology. In heterogeneous samples however background gradients are also present and prevent an accurate measurement of molecular displacements. The interference of time independent background gradients with the applied magnetic field gradients can be removed through the use of bipolar gradient pulses. However, when the background gradients are spatially non-uniform molecular diffusion introduces a temporal modulation of the background gradients. This defeats simple bipolar gradient suppression of background gradients in diffusion related measurements. Here we introduce a new method that requires the background gradients to be constant over coding intervals only. Since the coding intervals are typically at least an order of magnitude shorter than the storage time, this new method succeeds in suppressing cross-terms for a much wider range of heterogeneous samples.  相似文献   

20.
We have developed a novel in vivo proton MR spectroscopy magnetization transfer method for detection of lactate in ischemic tissue in the presence of interfering fat proton resonances. Pyruvate is magnetically labeled with a saturation pulse and, when converted to lactate, the lactate retains the label. Difference of spectra obtained with and without a saturation pulse contain no fat resonances. High-resolution spectra (determined with a GE 1.5 T Signa) of low lactate levels were obtained in vivo by water suppression using a 2662 composite RF pulse and slice-selective gradients. Spectral subtraction was performed in real time allowing the monitoring of a buildup of the intensity of the lactate peak. Pyruvate-lactate saturation transfer techniques should find wide applicability in the study of ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号