首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss stochastic modeling of volatility persistence and anti-correlations in electricity spot prices, and for this purpose we present two mean-reverting versions of the multifractal random walk (MRW). In the first model the anti-correlations are modeled in the same way as in an Ornstein–Uhlenbeck process, i.e. via a drift (damping) term, and in the second model the anti-correlations are included by letting the innovations in the MRW model be fractional Gaussian noise with H<1/2H<1/2. For both models we present approximate maximum likelihood methods, and we apply these methods to estimate the parameters for the spot prices in the Nordic electricity market. The maximum likelihood estimates show that electricity spot prices are characterized by scaling exponents that are significantly different from the corresponding exponents in stock markets, confirming the exceptional nature of the electricity market. In order to compare the damped MRW model with the fractional MRW model we use ensemble simulations and wavelet-based variograms, and we observe that certain features of the spot prices are better described by the damped MRW model. The characteristic correlation time is estimated to approximately half a year.  相似文献   

2.
Yu Wei  Yudong Wang  Dengshi Huang 《Physica A》2011,390(23-24):4260-4272
In this paper, we propose a new hedging model combining the newly introduced multifractal volatility (MFV) model and the dynamic copula functions. Using high-frequency intraday quotes of the spot Shanghai Stock Exchange Composite Index (SSEC), spot China Securities Index 300 (CSI 300), and CSI 300 index futures, we compare the direct and cross hedging effectiveness of the copula–MFV model with several popular copula–GARCH models. The main empirical results show that the proposed copula–MFV model obtains better hedging effectiveness than the copula–GARCH-type models in general. Furthermore, the hedge operating strategy based MFV hedging model involves fewer transaction costs than those based on the GARCH-type models. The finding of this paper indicates that multifractal analysis may offer a new way of quantitative hedging model design using financial futures.  相似文献   

3.
《Physica A》2006,363(2):393-403
We address the general problem of how to quantify the kinematics of time series with stationary first moments but having non stationary multifractal long-range correlated second moments. We show that a Markov process is sufficient to model important aspects of the multifractality observed in financial time series and propose a kinematic model of price fluctuations. We test the proposed model by analyzing index closing prices of the New York Stock Exchange and the DEM/USD tick-by-tick exchange rates obtained from Reuters EFX. We show that the model captures the characteristic features observed in actual financial time series, including volatility clustering, time scaling and fat tails in the probability density functions, power-law behavior of volatility correlations and, most importantly, the observed nonuniversal multifractal singularity spectrum. Motivated by our finding of strong agreement between the model and the data, we argue that at least two independent stochastic Gaussian variables are required to adequately model price fluctuations.  相似文献   

4.
In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.  相似文献   

5.
Hongtao Chen  Chongfeng Wu 《Physica A》2011,390(16):2926-2935
This paper analyzes the multifractality in Shanghai and Shenzhen stock markets using multifractal spectrum analysis and multifractal detrended fluctuation analysis. We find that the main source of multifractality is long-range correlations of large and small fluctuations. Then, we introduce a multifractal volatility measure (MV) and find that by taking MV as daily conditional volatility, the simulated series displayed similar “stylized facts” to the original daily return series. By capturing the dynamics of MV using the ARFIMA model, we find that the out-of-sample forecasting performance of the ARFIMA-MV model is better than some GARCH-class models and the ARFIMA-RV model under some criteria of loss function.  相似文献   

6.
Adnan Kasman  Saadet Kasman 《Physica A》2008,387(12):2837-2845
This paper examines the impact of the introduction of stock index futures on the volatility of the Istanbul Stock Exchange (ISE), using asymmetric GARCH model, for the period July 2002-October 2007. The results from EGARCH model indicate that the introduction of futures trading reduced the conditional volatility of ISE-30 index. Results further indicate that there is a long-run relationship between spot and future prices. The results also suggest that the direction of both long- and short-run causality is from spot prices to future prices. These findings are consistent with those theories stating that futures markets enhance the efficiency of the corresponding spot markets.  相似文献   

7.
Yu Wei  Peng Wang 《Physica A》2008,387(7):1585-1592
In this paper, taking about 7 years’ high-frequency data of the Shanghai Stock Exchange Composite Index (SSEC) as an example, we propose a daily volatility measure based on the multifractal spectrum of the high-frequency price variability within a trading day. An ARFIMA model is used to depict the dynamics of this multifractal volatility (MFV) measures. The one-day ahead volatility forecasting performances of the MFV model and some other existing volatility models, such as the realized volatility model, stochastic volatility model and GARCH, are evaluated by the superior prediction ability (SPA) test. The empirical results show that under several loss functions, the MFV model obtains the best forecasting accuracy.  相似文献   

8.
Recent studies in the econophysics literature reveal that price variability has fractal and multifractal characteristics not only in developed financial markets, but also in emerging markets. Taking high-frequency intraday quotes of the Shanghai Stock Exchange Component (SSEC) Index as example, this paper proposes a new method to measure daily Value-at-Risk (VaR) by combining the newly introduced multifractal volatility (MFV) model and the extreme value theory (EVT) method. Two VaR backtesting techniques are then employed to compare the performance of the model with that of a group of linear and nonlinear generalized autoregressive conditional heteroskedasticity (GARCH) models. The empirical results show the multifractal nature of price volatility in Chinese stock market. VaR measures based on the multifractal volatility model and EVT method outperform many GARCH-type models at high-risk levels.  相似文献   

9.
《Physica A》2006,371(2):552-564
Stochastic models of electricity prices have been used extensively during the last few years to describe prices fluctuations in deregulated power markets. Regime-switching models seem good candidates to capture the main features of electricity prices dynamics as the mean-reversion property as well the presence of jumps and spikes. Since they offer the possibility to introduce various mean-reversion rates, volatility and jumps, depending on the state of the system, such models allow to describe the properties of the stable motion and of the spike dynamics in a very flexible way. In this paper, two-regime and three-regime models are discussed, and a comparison performed on market data, is proposed.  相似文献   

10.
Hongseok Kim  Gabjin Oh  Seunghwan Kim 《Physica A》2011,390(23-24):4286-4292
We have studied the long-term memory effects of the Korean agricultural market using the detrended fluctuation analysis (DFA) method. In general, the return time series of various financial data, including stock indices, foreign exchange rates, and commodity prices, are uncorrelated in time, while the volatility time series are strongly correlated. However, we found that the return time series of Korean agricultural commodity prices are anti-correlated in time, while the volatility time series are correlated. The n-point correlations of time series were also examined, and it was found that a multifractal structure exists in Korean agricultural market prices.  相似文献   

11.
In this paper, we provide a simple, “generic” interpretation of multifractal scaling laws and multiplicative cascade process paradigms in terms of volatility correlations. We show that in this context 1/f power spectra, as recently observed in reference [23], naturally emerge. We then propose a simple solvable “stochastic volatility” model for return fluctuations. This model is able to reproduce most of recent empirical findings concerning financial time series: no correlation between price variations, long-range volatility correlations and multifractal statistics. Moreover, its extension to a multivariate context, in order to model portfolio behavior, is very natural. Comparisons to real data and other models proposed elsewhere are provided. Received 22 May 2000  相似文献   

12.
We construct a jump-diffusion model with seasonality, mean-reversion, time-dependent jump intensity and heteroskedastic disturbance for electricity spot prices, while keeping the analytical tractability of futures prices. We find that the jump component plays a considerably larger role than the diffusion component in the variance of spot prices. Moreover, the jump intensity is much higher during summer and winter. We also explore the seasonal market price of risk (MPR) with different maturities, from one month to five months. Our results show that the diffusion risk and the jump risk are priced quite differently.  相似文献   

13.
We examine the multifractal properties of the realized volatility (RV) and realized bipower variation (RBV) series in the Shanghai Stock Exchange Composite Index (SSECI) by using the multifractal detrended fluctuation analysis (MF-DFA) method. We find that there exist distinct multifractal characteristics in the volatility series. The contributions of two different types of source of multifractality, namely, fat-tailed probability distributions and nonlinear temporal correlations, are studied. By using the unit root test, we also find the strength of the multifractality of the volatility time series is insensitive to the sampling frequency but that the long memory of these series is sensitive.  相似文献   

14.
Angela De Sanctis 《Physica A》2007,384(2):457-467
We present a general methodology to model spikes in deregulated electricity markets using excitable dynamics in a multi-regime switching approach. In particular, we propose a two-regime switching model and a three-regime switching model in which the spikes phenomenon is described by a FitzHugh-Nagumo excitable dynamics. Both models seems to be interesting candidates for describing the main characteristics of electricity price dynamics as the occurrence of stable periods in which prices fluctuate around some long-run mean, and turbulent periods in which prices experience jumps and spikes of very large magnitude. In agreement with market data, both models can produce probability distributions of price returns with positive skewness and very high values of kurtosis.  相似文献   

15.
Grasping the historical volatility of stock market indices and accurately estimating are two of the major focuses of those involved in the financial securities industry and derivative instruments pricing. This paper presents the results of employing the intrinsic entropy model as a substitute for estimating the volatility of stock market indices. Diverging from the widely used volatility models that take into account only the elements related to the traded prices, namely the open, high, low, and close prices of a trading day (OHLC), the intrinsic entropy model takes into account the traded volumes during the considered time frame as well. We adjust the intraday intrinsic entropy model that we introduced earlier for exchange-traded securities in order to connect daily OHLC prices with the ratio of the corresponding daily volume to the overall volume traded in the considered period. The intrinsic entropy model conceptualizes this ratio as entropic probability or market credence assigned to the corresponding price level. The intrinsic entropy is computed using historical daily data for traded market indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Nikkei 225, and Hang Seng Index). We compare the results produced by the intrinsic entropy model with the volatility estimates obtained for the same data sets using widely employed industry volatility estimators. The intrinsic entropy model proves to consistently deliver reliable estimates for various time frames while showing peculiarly high values for the coefficient of variation, with the estimates falling in a significantly lower interval range compared with those provided by the other advanced volatility estimators.  相似文献   

16.
17.
Maximum likelihood estimation techniques for multifractal processes are applied to high-frequency data in order to quantify intermittency in the fluctuations of asset prices. From time records as short as one month these methods permit extraction of a meaningful intermittency parameter λλ characterising the degree of volatility clustering. We can therefore study the time evolution of volatility clustering and test the statistical significance of this variability. By analysing data from the Oslo Stock Exchange, and comparing the results with the investment grade spread, we find that the estimates of λλ are lower at times of high market uncertainty.  相似文献   

18.
Volatility, which represents the magnitude of fluctuating asset prices or returns, is used in the problems of finance to design optimal asset allocations and to calculate the price of derivatives. Since volatility is unobservable, it is identified and estimated by latent variable models known as volatility fluctuation models. Almost all conventional volatility fluctuation models are linear time-series models and thus are difficult to capture nonlinear and/or non-Gaussian properties of volatility dynamics. In this study, we propose an entropy based Student’s t-process Dynamical model (ETPDM) as a volatility fluctuation model combined with both nonlinear dynamics and non-Gaussian noise. The ETPDM estimates its latent variables and intrinsic parameters by a robust particle filtering based on a generalized H-theorem for a relative entropy. To test the performance of the ETPDM, we implement numerical experiments for financial time-series and confirm the robustness for a small number of particles by comparing with the conventional particle filtering.  相似文献   

19.
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.  相似文献   

20.
The inversion formula for conservative multifractal measures was unveiled mathematically a decade ago, which is however not well tested in real complex systems. We propose to verify the inversion formula using high-frequency turbulent financial data. We construct conservative volatility measure based on minutely S&P 500 index from 1982 to 1999 and its inverse measure of exit time. Both the direct and inverse measures exhibit nice multifractal nature, whose sealing ranges are not irrelevant. Empirical investigation shows that the inversion formula holds in financial markets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号