首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.

In this article, we utilize the insights gleaned from our recent formulation of space(-time), as well as dynamical picture of quantum mechanics and its classical approximation, from the relativity symmetry perspective in order to push further into the realm of the proposed fundamental relativity symmetry SO(2,4). The latter has its origin arising from the perspectives of Planck scale deformations of relativity symmetries. We explicitly trace how the diverse actors in this story change through various contraction limits, paying careful attention to the relevant physical units, in order to place all known relativity theories – quantum and classical – within a single framework. More specifically, we explore both of the possible contractions of SO(2,4) and its coset spaces in order to determine how best to recover the lower-level theories. These include both new models and all familiar theories, as well as quantum and classical dynamics with and without Einsteinian special relativity. Along the way, we also find connections with covariant quantum mechanics. The emphasis of this article rests on the ability of this language to not only encompass all known physical theories, but to also provide a path for extensions. It will serve as the basic background for more detailed formulations of the dynamical theories at each level, as well as the exact connections amongst them.

  相似文献   

2.
The failure of the Newtonian theory of gravitation to satisfactorily account for the motion of Mercury's perihelion cannot be held to have justified the development of general relativity. This paper shows how the origins of general relativity were firmly embedded in contemporary attempts to introduce the new mechanics of special relativity into gravitational theory. These new theories of gravitation took as their basis the electrodynamical equations as formulated by Minkowski and attempted to represent the gravitational potential first by a vector and then by a scalar (in the four-dimensional sense). That Einstein chose the symmetric fundamental tensorg ij as his gravitational potential is seen to have been both a natural and necessary development. With this viewpoint the full theory of general relativity can be seen to be remarkably similar to those theories of gravitation that preceded it. The paper also contains a previously unpublished letter written by Einstein to H. A. Lorentz.  相似文献   

3.
We exhibit theories of gravitation leading to the same set of solutions with algebraically special Ricci tensor as Einstein's equations. Their sets of solutions with algebraically general Ricci tensor differ from general relativity. It will be difficult to empirically distinguish these theories from general relativity.  相似文献   

4.
Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.  相似文献   

5.
The field equations of general relativity are shown to derive from a limit to force or to power in nature. The limits have the value of c4/4G and c5/4G. The proof makes use of a result of Jacobson. All known experimental data are consistent with the limits. Applied to the universe, the limits predict its darkness at night and the observed scale factor. Other experimental tests of the limits are proposed. The main counterarguments and paradoxes are discussed, such as the transformation under boosts, the force felt at a black hole horizon, the mountain problem, and the contrast to scalar–tensor theories of gravitation. The resolution of the paradoxes also clarifies why the maximum force and the maximum power have remained hidden for so long. The derivation of the field equations shows that the maximum force or power plays the same role for general relativity as the maximum speed plays for special relativity.  相似文献   

6.
In the case of weak fields, we compare the gravitational fields and the dynamical equation of a particle deduced from special relativistic gravitational theory with the corresponding results deduced from general relativity. Then both gravitational theories can be tested by experiments.  相似文献   

7.
The most majestic scientific achievement, of this century in mathematical beauty, axiomatic consistency, and experimental verifications has been special relativity with its unitary structure at the operator level, and canonical structure at the classical levels, which has turned out to be exactly valid for point particles moving in the homogenenous and isotropic vacuum (exterior dynamical problems). In recent decades a number of authors have studied nonunitary and noncanonical theories, here generally calleddeformations for the representation of broader conditions, such as extended and deformable particles moving within inhomogeneous and anisotrophic physical media (interior dynamical problems). In this paper we show that nonunitary deformations, including, q-, k-, quatum-, Lie-isotopic, Lie-admissible, and other deformations, even thoughmathematically correct, have a number of problematic aspects ofphysical character when formulated on conventional spaces over conditional fields, such as lack of invariance of the basic space-time units, ambiguous applicability to measurements, loss of Hermiticity-observability in time, lack of invariant numerical predictions, loss of the axions of special relativity, and others. We then show that the classical noncanonical counterparts of the above nonunitary deformations are equally afflicted by corresponding problems of physical consistency. We also show that the contemporary formulation of gravity is afflicted by similar problematic aspects because Riemannian spaces are noncanonical deformations of Minkowskian spaces, thus having noninvariant space-time units. We then point out that new mathematical methods, calledisotopies, genotopies, hyperstructures and their isoduals, offer the possibilities of constructing a nonunitary theory, known asrelativistic hadronic mechanics which: (1) is as axiomatically consistent as relativistic quantum mechanics, (2) preserves the abstract axioms of special relativity, and (3) results in a completion of the conventional mechanics much along the celebrated Einstein-Podolski-Rosen argument. A number of novel applications are indicated, such as a geometric unification of the special and general relativity via the isominkowskian geometry in which the two relativities are differentiated via the invariant basic unit, while preserving conventional Riemannian metrics, Einstein's field equations, and related experimental verifications; a novel operator form of gravity verifying the axioms of relativistic quantum mechanics under the universal isopoincaré symmetry; a new structure model of hadrons with conventional massive particles as physical constituents which is compatile with composite quarks and with established unitary classifications; and other novels applications in nuclear physics, astrophysics, theoretical biology, and other fields. The paper ends with the proposal of a number of new experiments, some of which may imply new practical applications, such as conceivable new forms of recycling nuclear waste. The achievement of axiomatic consistency in the study of the above physical problems has been possible for the first time in this paper thanks to mathematical advances that recently appeared in a special issue of theRendiconti Circolo Matematico Palermo, and in other journals identified in the Acknowledgements.  相似文献   

8.
A theory of relativity, along with its appropriate group of Lorentz-type transformations, is presented. The theory is developed on a metric withR×S 3 topology as compared to ordinary relativity defined on the familiar Minkowskian metric. The proposed theory is neither the ordinary special theory of relativity (since it deals with noninertial coordinate systems) nor the general theory of relativity (since it is not a dynamical theory of gravitation). The theory predicts, among other things, that finite-mass particles in nature have maximum rotational velocities, a prediction highly supported by recent experiments on 14 nuclei, such as 159 Yb that survives fission with angular velocities of up to 0.9 of the predicted value but does not reach it.Address during academic year 1985/1986: Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742.  相似文献   

9.
G. E. Volovik 《JETP Letters》2001,73(4):162-165
In the effective relativistic quantum field theories, the energy region in which special relativity holds can be sandwiched from both the high-and low-energy sides by domains where special relativity is violated. An example is provided by 3He-A, where the relativistic quantum field theory emerges as the effective theory. The reentrant violation of special relativity in the ultralow-energy corner is accompanied by the redistribution of the momentum-space topological charges among the fermionic flavors. At this ultralow energy, an exotic massless fermion with topological charge N 3=2 arises whose energy spectrum mixes classical and relativistic behaviors. This effect can lead to neutrino oscillations, if neutrino flavors are still massless on this energy scale.  相似文献   

10.
After reviewing the foundations of special relativity and the room left for rival theories, a set of nonrelativistic para-Lorentzian transformations is derived uniquely, based on (a) a weaker first principle, (b) the requirement that the transformations sought do not give rise to the clock paradox (in a refined version), and (c) the compliance of the transformations with the classical experiments of Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell. The corresponding dynamics is developed. Most of the experimental support of special relativity is reconsidered in the light of the new theory. It is concluded that the relativity of simultaneity has so far not been tested.Partially financed by Colciencias.  相似文献   

11.
We generalise the equations governing relativistic fluid dynamics given by Ehlers and Ellis for general relativity, and by Maartens and Taylor for quadratic theories, to generalisedf(R) theories of gravity. In view of the usefulness of this alternative framework to general relativity, its generalisation can be of potential importance for deriving analogous results to those obtained in general relativity. We generalise, as an example, the results of Maartens and Taylor to show that within the framework of generalf(R) theories, a perfect fluid spacetime with vanishing vorticity, shear and acceleration is Friedmann-Lemaître-Robertson-Walker only if the fluid has in addition a barotropic equation of state. It then follows that the Ehlers-Geren-Sachs theorem and its almost extension also hold forf(R) theories of gravity.  相似文献   

12.
U. Bleyer 《Annalen der Physik》1982,494(3):203-208
The Principle of relativity and the equivalence principle are the most important foundation of any theory of gravitation. We can formulate these principles by the help of the LORENTZ and the EINSTEIN groups. If we start with an action functional, the demand of invariance of this action with respect to these groups makes possible to get detailed conclusions about the general structure of theories of gravitation. EINSTEIN'S idea, to interpret gravitation as deformation of the local inertial systems of the special theory of relativity, leads to bi-tetrad theories, which we call TREDER-type tetrad theories. In this theories a sufficient number of gauge parameters is introduced in order to ensure the invariance of the action functional without limitations for the field variables.  相似文献   

13.
We construct classical theories of gravity on the basis of special relativity and the Einstein-Infeld accelerating-elevator thought experiment. The resulting theories share most of the main features of general relativity, namely the nonlinear character of the theory, the metrical significance of the gravitational potentials and the geodesic equation of particle motion. They differ from general relativity in at most nonlinear terms in the gravitational constant G in their equations of particle motion and field equations.  相似文献   

14.
We consider a sequence of absolute-space kinematical theories which differ more or less from the special theory of relativity (STR) in the amount of clock retardation which they predict, but which agree with STR with respect to roundtrip light experiments, such as Michelson-Morley and Kennedy-Thorndike. This sequence of theories is imbedded in the synchrony-free formulation of STR developed by Winnie by modifying the equal passage time principle. The paper has bearing on the relationship between the slow clock transport behavior of clocks and the one-way velocity of light. Experiments which claim to measure the latter are discussed.  相似文献   

15.
The only test theory used by workers in the field of testing special relativity to analyze the significance of their experiments is the proof by H. P. Robertson [Rev. Mod. Phys. 21, 378 (1949)] of the Lorentz transformations from the results of the experimental evidence. Some researchers would argue that the proof contains an unwarranted assumption disguised as a convention about synchronization procedures. Others would say that alternative conventions are possible. In the present paper, no convention is used, but the Lorentz transformations are still obtained using only the results of the experiments in Robertson's proof, namely the Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell experiments. Thus the revised proof is a valid test theory which is independent of any conventions, since one appeals only to the experimental evidence. The analysis of that evidence shows the directions in which efforts to test special relativity should go. Finally it is shown how the resulting test theory still has to be improved for consistency in the analysis of experiments with complicated experimental setups, how it can be simplified for expediency as to what should be tested, and how it should be completed for a missing step not considered by Robertson.  相似文献   

16.
This paper addresses the significance of the general class of diffeomorphisms in the theory of general relativity as opposed to the Poincaré group in a special relativistic theory. Using Anderson's concept of an absolute object for a theory, with suitable revisions, it is shown that the general group of local diffeomorphisms is associated with the theory of general relativity as its local dynamical symmetry group, while the Poincaré group is associated with a special relativistic theory as both its global dynamical symmetry group and its geometrical symmetry group. It is argued that the two groups are of equal significance as symmetry groups of their associated theories.  相似文献   

17.
As in the last few years there has been a renewed interest in the laws of Ampère for the force between current elements and of Weber for the force between charges, we analyze the limiting velocity which appears in Weber's law. Then we make the same analysis for Phipps' potential and for generalizations of it. Comparing the results with the relativistic calculation, we obtain that these theories can yieldc for the ultimate speed of the charges or for the ultimate relative speed between the charges but not for both simultaneously, as in the case in the special theory of relativity.  相似文献   

18.
This paper is a sequel to various papers by the author devoted to the EPR correlation. The leading idea remains that the EPR correlation (either in its well-known form of nonseparability of future measurements, or in its less well-known time-reversed form of nonseparability of past preparations) displays the intrinsic time symmetry existing in almost all physical theories at the elementary level. But, as explicit Lorentz invariance has been an essential requirement in both the formalization and the conceptualization of my papers, the noninvariant concept ofT symmetry has to yield in favor of the invariant concept ofPT symmetry, or even (asC symmetry is not universally valid) to that ofCPT invariance. A distinction is then drawn between macro special relativity, defined by invariance under the orthochronous Lorentz group and submission to the retarded causality concept, and micro special relativity, defined by invariance under the full Lorentz group and includingCPT symmetry. TheCPT theorem clearly implies that micro special relativityis relativity theory at the quantal level. It is thus of fundamental significance not only in the search of interaction Lagrangians, etc., but also in the basic interpretation of quantum mechanics, including the understanding of the EPR correlation. While the experimental existence of the EPR correlations is manifestly incompatible with macro relativity, it is fully consistent with micro relativity. Going from a retarded concept of causality to one that isCPT invariant has very radical consequences, which are briefly discussed.  相似文献   

19.
It is shown that no concrete particle can have zero rest mass. A separate photon is proven to be a concrete particle. The nonexistence of the electromagnetic field as an independent physical reality is demonstrated. The existence of a subatomic electromagnetic particle of a very small rest mass, theemon, instead of the electromagnetic field, is stated. The compatibility of the notion of the emon with the special relativity theory is elucidated. Some corollaries of the existence of the emon as well as the possibilities of determining its rest mass are discussed. The explanations of the relativity aberration and Doppler effect in terms of the emon are given. The importance of the principle of concreteness of experiments is emphasized and illustrated. Some related problems are noticed.  相似文献   

20.
Clifford M. Will 《Pramana》2004,63(4):731-740
We review the experimental evidence for Einstein’s general relativity. Tests of the Einstein equivalence principle support the postulates of curved space-time and bound variations of fundamental constants in space and time, while solar system experiments strongly confirm weak-field general relativity. The binary pulsar provides tests of gravitational wave damping and of strong-field general relativity. Future experiments, such as the gravity probe B gyroscope experiment, a satellite test of the equivalence principle, and tests of gravity at short distance to look for extra spatial dimensions could further constrain alternatives to general relativity. Laser Interferometric Gravitational Wave Observatories on Earth and in space may provide new tests of scalar-tensor gravity and graviton-mass theories via the properties of gravitational waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号