首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photodynamic therapy (PDT) is a promising treatment modality for malignant tumors but it is also immunosuppressive which may reduce its therapeutic efficacy. The purpose of our study was to elucidate the role of CD4+ and CD8+ T cells in PDT immunosuppression. Using silicon phthalocyanine 4 (Pc4) as photosensitizer, nontumor-bearing CD4 knockout (CD4-/-) mice and their wild type (WT) counterparts were subjected to Pc4-PDT in a manner identical to that used for tumor regression (1 cm spot size, 0.5 mg kg(-1) Pc4, 110 J cm(-2) light) to assess the effect of Pc4-PDT on cell-mediated immunity. There was a decrease in immunosuppression in CD4-/- mice compared with WT mice. We next examined the role of CD8+ T cells in Pc4-PDT-induced immunosuppression using CD8-/- mice following the same treatment regimen used for CD4-/- mice. Similar to CD4-/- mice, CD8-/- mice exhibited less immunosuppression than WT mice. Pc4-PDT-induced immunosuppression could be adoptively transferred with spleen cells from Pc4-PDT treated donor mice to syngenic naive recipients (P < 0.05) and was mediated primarily by T cells, although macrophages were also found to play a role. Procedures that limit PDT-induced immunosuppression but do not affect PDT-induced regression of tumors may prove superior to PDT alone in promoting long-term antitumor responses.  相似文献   

2.
Transduction of cytokine gene into tumor cells is a promising method of tumor therapy, but the value is limited by accompanying side effects. To focus antitumor immune response to tumor antigen-specific CTL, we developed an antitumor vaccine by transfecting modified IL-2 gene in a membrane-bound form (mbIL-2) into B16F10 melanoma cells. The mbIL-2 clone showed reduced tumorigenicity and metastatic ability, and inhibited metastasis and prolonged the survival of mice against B16F10 cells. The inhibition of B16F10 metastasis by mbIL-2 was accompanied by the increment of CD8(+) T cells. The metastasis of mbIL-2 clone was significantly increased in the CD8(+) T cell-depleted mice, but not in CD4(+) T cell depleted mice. Spleen cells immunized with the mbIL-2 clone showed higher CTL activity towards B16F10 cells than those immunized with control cells. The size of CD8(+) T cell population in the lung of mice injected with the mbIL-2 clone was markedly greater than that of mice injected with B16F10 cells, but there was no detectible change in CD4(+) and CD8(+) T cell populations of lymph nodes and spleen. These results suggest that when the mbIL-2 clone is introduced into the blood stream, it migrates mainly to lung and activates CD8(+) T cells in situ, possibly by direct priming. Such a tumor vaccine may ameliorate the toxic side effects encountered with conventional cytokine gene therapy.  相似文献   

3.
Tumor associated carbohydrate antigens (TACAs), such as the Tn antigen, have emerged as key targets for the development of synthetic anticancer vaccines. However, the induction of potent and functional immune responses has been challenging and, in most cases, unsuccessful. Herein, we report the design, synthesis and immunological evaluation in mice of Tn-based vaccine candidates with multivalent presentation of the Tn antigen (up to 16 copies), both in its native serine-linked display (Tn-Ser) and as an oxime-linked Tn analogue (Tn-oxime). The high valent vaccine prototypes were synthesized through a late-stage convergent assembly (Tn-Ser construct) and a versatile divergent strategy (Tn-oxime analogue), using chemoselective click-type chemistry. The hexadecavalent Tn-oxime construct induced robust, Tn-specific humoral and CD4+/CD8+ cellular responses, with antibodies able to bind the Tn antigen on the MCF7 cancer cell surface. The superior synthetic accessibility and immunological properties of this fully-synthetic vaccine prototype makes it a compelling candidate for further advancement towards safe and effective synthetic anticancer vaccines.

A fully-synthetic anticancer vaccine candidate incorporating an hexadecavalent Tn antigen analogue display via oxime linkages induced tumor-specific IgG antibodies and cellular immune responses in mice coadministered with QS-21 as an adjuvant.  相似文献   

4.
The conventional avian influenza vaccines rely on development of neutralizing antibodies against the HA and NA antigens. However, these antigens are highly variable, and hence there is a need for better vaccine candidates which would offer broader protection in animals. The M1 of avian influenza is another major structural protein that has conserved epitopes that are reported to induce CD8+ T cells and can contribute to protection against morbidity and mortality from influenza. Hence in an effort to study the immune response of rM1 either alone or in combination with rHA, the hemagglutinin (HA) and matrix protein (M1) of A/Hatay/2004/H5N1 strain of avian influenza were expressed in Pichia pastoris as his-tagged proteins and purified through Ni-NTA chromatography. The His-tag was removed using TEV protease cleavage site and the immunogenicity of purified rHA and rM1 either alone or in combination was determined in mice. One group of mice was immunized with 5 μg of purified rHA, the other group was immunized with rM1, and a third group of mice were immunized with 5 μg of rHA and rM1. All the animals were boosted twice, once on 28 days postimmunization (dpi) and the second on 42 dpi. The immune response was evaluated by enzyme-linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) assay. The group of mice immunized with rHA and rM1 together showed significantly higher immune response against rHA and rM1 than mice immunized with either HA or M1 antigens. The addition of rM1 with rHA resulted in increased HI titer in animals immunized with both the antigens. These results suggest that the HA and M1 expressed in P. pastoris can be utilized in combination for the development of faster and cost-effective vaccines for circulating and newer strains of avian influenza and would aid in combating the disease in a pandemic situation, in which production time matters greatly.  相似文献   

5.
《中国化学快报》2023,34(1):107446
Repeated waves of influenza virus H7N9 epidemics after 2013 have caused severe influenza in humans, with mortality reaching approximately 40%–50%. To prevent possible pandemics, the development of highly effective vaccines against influenza virus H7N9 is highly desired. In the present study, by taking advantage of the d-tetra-peptide adjuvant (GDFDFDY), we reported a simple method to prepare H7N9 vaccines. Naproxen (Npx), with good anti inflammatory and broad anti-viral effects, was employed as an N-terminal capping group to construct a hydrogel precursor, Npx-GDFDFDY. The hydrogel adjuvant was prepared using a routine heating cooling protocol and the final vaccine was ready after mixing with the split A/Zhejiang/DTID-ZJU01/2013 (H7N9) antigen by vortexing. Compared with the traditional Al(OH)3 adjuvant vaccine and the split vaccine, our hydrogel adjuvant vaccine showed the best preventive effects against H7N9 infection. A mechanistic study illustrated that higher antibody responses and variations in cytokine expression might account for its increased protective effects. Our strategy demonstrated the advantages of a peptide hydrogel adjuvant in the application of vaccines against H7N9 and demonstrated its potential application in vaccines against emerging threats from other viruses.  相似文献   

6.
CD4 is a cell surface glycoprotein that acts as a co-receptor for the T cell antigen receptor by binding to a non-polymorphic portion of MHC molecules. CD4 also functions as a receptor for human immunodeficiency virus type-I (HIV-1) because the viral envelope glycoprotein gp120 binds to CD4 with a high affinity. We have previously demonstrated that introduction of mutations into CD4 abolished the binding of gp120 and prevented HIV-1 from entering cells and spreading. However, whether introduction of such mutations into CD4 causes decreased binding to MHC and loss of function is yet to be determined. We generated transgenic mouse lines by injecting a mutant human CD4 (muthCD4) gene under a murine CD4 enhancer/promoter to ensure tissue and stage specific expression. To exclude the influence of endogenous murine CD4, transgenic mice were crossed with murine CD4-targeted mice to produce muthCD4 transgenic mice lacking endogenous CD4 (muthCD4TG/KO mice). In these mice, T lymphocytes expressing muthCD4 expanded and matured in the thymus and were present in the spleen and lymph nodes. They also activated B cells to mount an antibody response to a T-dependent antigen. The results from this study suggest that a human variant of CD4 modified to be resistant to HIV-1 binding can rescue the signaling for T cell development in the thymus in vivo, having helper T cell functions. Thus, further characterization of muthCD4 molecules should open the way to new HIV treatment modalities.  相似文献   

7.
4-1BB, a transmembrane molecule, member of the tumor necrosis factor receptor superfamily, is an important costimulatory molecule in the immune response, plays a key role in the clonal expansion and survival of CD8(+) T cells. In this study, we investigated 4-1BB regulation of CD4(+) T cell responses using 4-1BB transgenic (TG) mice that constitutively expressed 4-1BB on mature T cells. We first showed that CD4(+) T cells of 4-1BB TG mice had more sustained proliferative capacity in response to TCR/4-1BB stimulation in vitro compared to WT mice. Secondly, 4-1BB TG mice exhibited a more elevated contact hypersensitivity (CHS) response mediated by CD4+ Th1 cells due to more vigorous expansion of and apoptotic inhibition of CD4(+) T cells. Finally, CD4(+) T cells of 4-1BB TG mice had a heightened capacity for T cell priming. Overall, our results demonstrate the involvement of 4-1BB in CD4(+) Th1 cell responses by regulating the clonal expansion and survival of CD4(+) T cells as seen in CD8(+) T cells.  相似文献   

8.
Autoimmune mice carrying the lprcg/lprcg(lprcg),lpr/lpr(lpr),gld/gld(gld) and Yaa genes exhibit massive lymphoproliferation and a systemic lupus erythematosus-like syndrome. The surface markers of abnormally expanded lymphocytes used were Thy-1+, CD4-CD8- (double negative, DN) and CD45+ for lprcg, lpr, gld and (lprcg X gld) hybrid (F1-lprcg-gld) mice, and Ig+ for Yaa mice. To characterize the cell surface properties and differentiation pathway of lymphocytes in autoimmune mice, the cell electrophoretic mobility (EPM) was determined for the lymph node (LN), spleen and thymus cells. The EPM of lymphocytes derived from swollen LN was of the T cell type in lprcg, lpr, gld and F1-lprcg-gld mice, but of the B cell type in Yaa mice, indicating that the EPM of abnormally proliferated lymphocytes in autoimmune mice reflects their origin, and that the surface properties detected as a net negative charge were the same in abnormal and normal lymphocytes. The electrophoretic behavior of whole thymocytes was also the same in autoimmune and normal mice. The DN, and CD4+CD8- and CD4-CD8+ (single positive, SP) thymocytes from normal mice exhibited high EPM, while CD4+CD8+ (double positive, DP) thymocytes exhibited low EPM. According to the recent concept of intrathymic T cell differentiation (Schwartz, R. H., Cell. 1989, 57, 1073-1081), it is suggested that EPM of thymocytes may change with maturation in the following manner: DN thymocytes with high EPM----DP thymocytes with low EPM----SP thymocytes and autoimmune DN T cells with high EPM.  相似文献   

9.
Triton X-100 is applied to influenza vaccines at different stages of the manufacturing process to prevent aggregation and precipitation of biomolecules. Furthermore it is used to disintegrate the virus particles in split vaccine and to guarantee the homogeneity during production and utilisation. The final concentration of Triton X-100 has to be determined because the concentration changes in manufacturing process. The determination of the total amount of Triton X-100 as well as the separation of its ethylene oxide oligomers was possible with high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). In HPLC a change of the column and eluent was necessary, in CE different electrolytes were used for the various separation effects. The HPLC method for the analysis of total Triton was preferred for the quantification of Triton X-100 in influenza vaccine because of better linearity, reproducibility and detection sensitivity compared to CE. In the end products an average concentration of 0.117 mg/mL was found. Received: 19 December 1996 / Revised: 27 February 1997 / Accepted: 6 March 1997  相似文献   

10.
Blockade of signal 1 or 2 for T-cell activation by the use of anti-CD45RB and anti-CD154 monoclonal antibodies (mAb) (two-signal blockade) has been proven effective in preventing or delaying graft rejection. However, the mechanisms of its immunomodulatory effects are clearly unknown and the present studies were performed to determine how the two-signal blockade modulate allogeneic immune responses, especially T-cell mediated cellular immunity, in a murine skin allograft model. We now report on the profound inhibition of alloreactive T cells by two-signal blockade via CD4-dependent mechanisms. C57BL/6 mice of BALB/c skin allograft were treated with anti-CD45RB, anti-CD154, CTLA4-Ig, or their combinations. For depletion of CD4 or CD8 T cells, the recipients received CD4-depleting or CD8-depleting mAb. We confirmed that survival of skin allograft was markedly prolongated in the two-signal blockade-treated group. In depletion study, anti-CD45RB, anti-CD154 and CD4-depleting mAb-treated group showed acute rejection of skin allograft in contrast to CD8-depleting group treated with the two-signal blockade. In the group treated with the two-signal blockade, the proportions of CD4+CD45RB(low) and CD8+CTLA-4 regulatory T cells were increased while effector CD8+ T cells, including IFN-gamma-secreting and CD8+CD62L(low) T cells, were decreased when compared with non-treated group. In contrast, the CD4-depleted group treated with the two-signal blockade resulted in recovery from immunoregulatory effects of two-signal blockade. In addition, results of IL-4 and IL-10 production were also showed CD4-dependence. Therefore, the two- signal blockade is accompanied by CD4-dependent mechanisms in allogeneic skin transplantation.  相似文献   

11.
Exposure to ultraviolet radiation results in increased levels of intradermal cis-urocanic acid (cUCA) and alters cutaneous immunity by interfering with processing and presentation of antigen by Langerhans cells. Reports on effects of systemic immunotoxicity with 30 day cUCA exposure in laboratory rodents include thymic atrophy, thymic hypocellularity and decreased T-cell-mediated immunity; however, immune effects of single exposure or 5 day cUCA administration, which may better mimic human exposures, are poorly defined. The present study initially evaluated immune effects of single, 5 day, and 4 week cUCA exposure in C57BL/6N mice. Single administration of intradermal cUCA resulted in decreased splenocyte phagocytosis that persisted for 30 days after cUCA exposure. Five day consecutive cUCA exposure decreased numbers of phenotypically mature CD4(+)CD8(-) and CD4(-)CD8(+) (single positive) thymocytes, increased CD4(+)CD8(+) (double positive) immature thymocytes and increased splenocyte proliferation. Prolonged cUCA exposure (4 weeks) caused profound thymic hypocellularity and splenic hypercellularity and increased splenic macrophage chemiluminescence. Because of this apparent sensitivity of C57BL/6N mice to cUCA, thymic hypocellularity was compared between C57BL/6N and C3H/HeN mice dosed with cUCA, and was found to be more pronounced in the C57BL/6N strain. These results are an extension of previous conclusions on immune modulation caused by cUCA in the spleen and thymus. Further, the observed variation in sensitivity between the mouse strains is consistent with known genetic susceptibility of these strains to the immunomodulatory effects of exposure to sunlight.  相似文献   

12.
The immunoactivity was evaluated of Dendrobium officinale Kimura & Migo, a Chinese herbal plant, and its crude polysaccharides. Different dosages of D. officinale and its polysaccharides were orally administered to healthy BALB/c mice. The control group was given distilled water. After 4 weeks, immune parameters, including cellular immunity (delayed-type hypersensitivity and natural killer cell activity), humoral immunity (serum hemolytic complement activity), nonspecific immunity (peritoneal macrophage phagocytosis) and interferon-gamma production by splenocytes were measured. The results showed that D. officinale and its polysaccharides can significantly enhance cellular immunity and nonspecific immunity in mice. Humoral immunity was also enhanced after oral administration of D. officinale, but the polysaccharides had no influence. Both D. officinale and its polysaccharides markedly increased IFN-gamma production by murine splenocytes. Six fractions were isolated from the polysaccharides; the molecular weight of the major fraction was 533,700 Da, and composed of mannose, glucose and rhamnose in a molar ratio of 7.3:1.3:1.0.  相似文献   

13.
Ultraviolet light exposure can impair immune responses that are not restricted to the exposed skin but is also found at other sites, i.e. systemic immunosuppression. Therefore, we investigated the UV-induced modulating effects on vaccination against hepatitis B in a mouse model. Two different mouse strains, BALB/c and C57B1/ 6, were vaccinated intramuscularly against hepatitis B. Mice were exposed to different doses of ultraviolet B (UVB) for five consecutive days on shaved back skin before the vaccination. Vaccination against hepatitis B induced cellular (delayed-type hypersensitivity [DTH] and lymphocyte stimulation test) as well as humoral immune responses in both mouse strains. The DTH responses in C57BB1/6 mice were statistically significantly higher compared with BALB/c mice. UVB exposure induced a dose-dependent suppression of cellular immunity in both strains of mice. C57B1/6 mice seemed to be more susceptible to this suppression. Anti-hepatitis B surface antibodies (total-Ig) were only marginally suppressed after UVB exposure. IgG2a and interferon-gamma levels, both indicators for Th1 immune response, were suppressed in both mouse strains after UVB exposure. In summary, UVB exposure induced a dose-dependent suppression of both cellular and humoral immune responses after hepatitis B vaccination, although the suppressive effects on humoral immunity were limited to IgG2a production. Susceptibility to UVB-induced immunomodulation depended on the strain of mice and their predilection for developing different T cell responses.  相似文献   

14.
Exosomes are small membrane vesicles secreted from various types of cells. Tumor-derived exosomes contain MHC class I molecules and tumor-specific antigens, receiving attention as a potential cancer vaccine. For induction of efficient anti-tumor immunity, CD4+ helper T cells are required, which recognize appropriate MHC class II-peptide complexes. In this study, we have established an MHC class II molecule-expressing B16F1 murine melanoma cell line (B16F1- CIITA) by transduction of the CIITA (Class II transactivator) gene. Exosomes from B16-CII cells (CIITA- Exo) contained a high amount of MHC class II as well as a tumor antigen TRP2. When loaded on dendritic cells (DCs), CIITA-Exo induced the increased expression of MHC class II molecules and CD86 than the exosomes from the parental cells (Exo). In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced the splenocyte proliferation and IL-2 secretion. Consistently, compared to B16-Exo, CIITA-Exo induced the increased mRNA levels of inflammatory cytokines such as TNF-α, chemokine receptor CCR7 and the production of Th1-polarizing cytokine IL-12. A tumor preventive model showed that CIITA-Exo significantly inhibited tumor growth in a dose-dependent manner. Ex vivo assays using immunized mice demonstrated that CIITA-Exo induced a higher amount of Th1-polarized immune responses such as Th1-type IgG2a antibodies and IFN-γ cytokine as well as TRP2-specific CD8+ T cells. A tumor therapeutic model delayed effects of tumor growth by CIITA-Exo. These findings indicate that CIITA-Exo are more efficient as compared to parental Exo to induce anti-tumor immune responses, suggesting a potential role of MHC class II-containing tumor exosomes as an efficient cancer vaccine.  相似文献   

15.
Our previous study has demonstrated that there is a significant delay of Balb/c cardiac allograft rejection in the C57BL/6 4-1BB-deficient knockout recipient. In this study, we examined the effect of combined blockade of the 4-1BB and CD28 costimulatory pathways on cardiac allograft rejection in the C57BL/6-->Balb/c model. A long-term cardiac allograft survival was induced in CD28/4-1BB- deficient mice (>100 days survival in 3 of 4 mice), which was comparable with CD28-deficient mice (>100 days survival in 2 of 5 mice; P<0.2026). There was no long-term cardiac allograft survival in either wild-type (WT) or 4-1BB-deficient mice, even though 4-1BB-deficient recipients showed a significant delay of cardiac allograft rejection than WT mice. An in vitro mixed leukocyte reaction (MLR) assay showed that 4-1BB-deficient and WT mouse T cells had a similar responsiveness to allostimulation, whereas CD28- and CD28/4-1BB-deficient mouse T cells had a defective responsiveness to allostimulation. Furthermore, 4-1BB-deficient mice showed a similar CTL but an elevated Ab response against alloantigens as compared to WT mice, and the alloimmune responses of 4-1BB-deficient mice were abrogated in the CD28-deficient background. Overall, these results indicate that the CD28 costimulatory pathway plays a major role in the alloimmune response and that 4-1BB signals are dependent upon CD28 signals.  相似文献   

16.
Ultraviolet radiation (UVR) causes systemic immune suppression, decreasing the delayed type and contact hypersensitivity responses in animals and humans and enhancing certain mycobacterial, parasitic and viral infections in mice. This study tests the hypothesis that prior exposure to UVR enhances influenza infections in mice. BALB/c female mice were exposed to 0-8.2 kJ/m2 of UVR. Exposed and unexposed mice were infected intranasally three days later with 150-300 plaque-forming units/mouse (lethal dose (LD)20-LD40) of mouse-adapted Hong Kong Influenza A/68 (H3N2) virus or sham infected with 50 microL Hanks' balanced salt solution/mouse. Mortality from viral infection ranged from 25-50%. UVR exposure increased virus-associated mortality in a dose-dependent manner (up to a two-fold increase at 8.2 kJ/m2). The increased mortality was not associated with bacterial pneumonia. The highest dose of UVR also accelerated the body weight loss and increased the severity and incidence of thymic atrophy associated with influenza infection. However, UVR treatment had little effect on the increase in lung wet weight seen with viral infection, and, to our surprise, did not cause an increase in virus titers in the lung or dissemination of virus. The mice died 5-6 days after infection, too early for adaptive immune responses to have much impact. Also, UVR did not interfere with the development of protective immunity to influenza, as measured by reinfection with a lethal challenge of virus. Also, cells adoptively transferred from UVR or untreated mice were equally protective of recipient mice challenged with a lethal dose of virus. The mice resemble mice succumbing to endotoxin, and influenza infection increased the levels of tumor necrosis factor alpha (TNF-alpha) in bronchoalveolar lavage fluid and serum cortisol levels; however, UVR preexposure did not increase either of these responses to the virus. The results show that UVR increased the morbidity, mortality and pathogenesis of influenza virus in mice without affecting protective immunity to the virus, as measured by resistance to reinfection. The mechanism of enhanced mortality is uncertain, but the data raises concerns that UVR may exacerbate early responses that contribute to the pathogenesis of a primary viral infection.  相似文献   

17.
More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.  相似文献   

18.
Legionella bacterium, an intracellular pathogen of mononuclear phagocytes, causes acute fatal pneumonia, especially in patients with impaired cellular immune responses. Until recently, however, the toll-like receptor (TLR) engagement of bacterial proteins derived from Legionella is uncertain. We previously showed that a 19-kDa highly conserved peptidoglycan-associated lipoprotein (PAL) of Legionella pneumophila induced the PAL-specific B cell and T cell responses in mice. In this study, we observed that the rPAL antigen of L. pneumophila, as an effector molecule, activated murine macrophages via TLR2 and produced proinflammatory cytokines such as IL-6 and TNF-α. In both BALB/c and TLR4-deficient C3H/HeJ mice, pretreatment of macrophages with anti-TLR2 mAb showed severely impaired cytokine production in response to the rPAL. In addition, in vitro the rPAL treatment increased the cell surface expression of CD40, CD80, CD86 and MHC I/II molecules. We further showed that the synthetic CpG-oligodeoxynucleotides (CpG ODN) coadministered with the rPAL enhanced IL-12 and IL-6 production and expression of CD40, CD80 and MHC II compared to the rPAL treatment alone. In conclusions, these results indicate that Legionella PAL might activate macrophages via a TLR2-dependent mechanism which thus induce cytokine production and expression of costimulatory and MHC molecules.  相似文献   

19.
GITR (glucocorticoid-induced TNF receptor) is a recently identified member of the TNF receptor superfamily. The receptor is preferentially expressed on CD4(+)CD25(+) regulatory T cells and GITR signals break the suppressive activity of the subset. In this study, we wanted to reveal the in vivo function of GITR in herpes simplex virus type 1 (HSV-1) infection. A single injection of anti-GITR mAb (DTA-1) immediately after viral infection significantly increased the number of CD4(+) and CD8(+) T cells expressing CD25, an activation surface marker, and secreting IFN-gamma. We confirmed these in vivo observations by showing ex vivo that re-stimulation of CD4(+) or CD8(+) T cells with a CD4(+) or CD8(+) T-cell-specific HSV-1 peptide, respectively, induced a significant elevation in cell proliferation and in IFN-gamma secretion. Our results indicate that GITR signals play a critical role in the T-cell immunity to HSV-1.  相似文献   

20.
Whole body microwave sinusoidal irradiation of male NMRI mice with 8.15-18 GHz (1 Hz within) at a power density of 1 microW/cm2 caused a significant enhancement of TNF production in peritoneal macrophages and splenic T lymphocytes. Microwave radiation affected T cells, facilitating their capacity to proliferate in response to mitogenic stimulation. The exposure duration necessary for the stimulation of cellular immunity ranged from 5 h to 3 days. Chronic irradiation of mice for 7 days produced the decreasing of TNF production in peritoneal macrophages. The exposure of mice for 24 h increased the TNF production and immune proliferative response, and these stimulatory effects persisted over 3 days after the termination of exposure. Microwave treatment increased the endogenously produced TNF more effectively than did lipopolysaccharide, one of the most potential stimuli of synthesis of this cytokine. The role of microwaves as a factor interfering with the process of cell immunity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号