首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Adjuvants stimulate the immune system to vigorously respond to a vaccine. While current adjuvants such as aluminum salts and oil-in-water emulsions have been used for decades, they do not generate broad and long-lasting responses in many vaccines. Consequently, more potent adjuvants are needed. Here, using computer-aided molecule design and machine learning, we discovered 2 new, broad-spectrum adjuvants that can boost vaccine responses. Our library containing 46 toll-like receptor (TLR)-targeting agonist ligands were assembled on Au nanoparticles. Comprehensive in vitro, ex vivo and in vivo studies showed both leads promoted dendritic cell activation via multiple TLRs and enhanced antigen presentation to T cells. When used together with tumor-specific antigens to immunize mice against B16-OVA melanoma and 4T1-PD1 breast cancer, both adjuvants unleashed strong immune responses that suppressed tumor growth and lung metastases. Our results show computer-aided design and screening can rapidly uncover potent adjuvants for tackling waning immunity in current vaccines.  相似文献   

2.
Graft-versus-host disease (GVHD) is mediated by mature donor T cells contained in the hematopoietic stem cell graft. During the development of GVHD, signaling through a variety of costimulatory receptors plays an important role in allogeneic T cell responses. Even though delivery of costimulatory signals is a prerequisite for full activation of donor T cells in the phase of their interactions with host APCs, their involvement with GVHD might occur over multiple stages. Like many other aspects of GVHD, promise of therapeutic interventions with costimulatory pathways has been gleaned from preclinical models. In this review, I summarize some of the advances in roles of costimulatory molecules in GVHD pathophysiology and discuss preclinical approaches that warrant further exploration in the clinic, focusing on novel strategies to delete pathogenic T cells.  相似文献   

3.
Vaccine adjuvants have been widely used to enhance the immunogenicity of the antigens and elicit long-lasting immune response. However, only few vaccine adjuvants have been approved by the FDA for human use so far. Therefore, there is still an urgent need to develop novel adjuvants for the potential applications in clinical trials. Herein, non-nucleotide small molecule STING agonist di ABZI was employed to construct glycopeptide antigen based vaccines for the first time. Immunological evaluation indicated di ABZI not only enhanced the production of antibodies and T cell immune responses, but also inhibited tumor growth in tumor-bearing mice in glycopeptide-based subunit vaccines. These results indicated that di-ABZI demonstrates a high potential as adjuvant for the development of cancer vaccines.  相似文献   

4.
Interleukine-2 (IL-2) is a growth factor for antigen-stimulated T lymphocytes and is responsible for T-cell clonal expansion after antigen recognition. It has been demonstrated that DNA vaccine-elicited immune responses in mice could be augmented substantially by using either an IL-2 protein or a plasmid expressing IL-2. Twenty mice, divided into four experimental groups, were immunized with: (1) sham plasmid; (2) HIV-1 DNA vaccine alone; (3) HIV-1 DNA vaccine and IL-2 protein; or (4) HIV-1 DNA vaccine and IL-2 plasmid, separately. All the groups were immunized 3 times at a 2-week interval. Fourteen days after the last DNA vaccine injection, recombinant MVA was injected into all the mice except those in group 1. ELISA and ELISPOT were employed to investigate the effect of IL-2 on DNA vaccine immune responses. The obtained results strongly indicate that the efficacy of HIV vaccine can be enhanced by co-administration of a plasmid encoding IL-2.  相似文献   

5.
Costimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80. The compounds have relatively slow off-rates and block both CD28 and CTLA-4 binding, implying that they occlude the shared ligand binding site. The compounds inhibit proinflammatory cytokine release in T cell assays with submicromolar potency, and as such, they represent promising leads for the development of novel therapeutics for immune-mediated inflammatory disease. Our results also suggest that other predominantly beta proteins, such as those that dominate the cell surface, may also be accessible as potentially therapeutic targets.  相似文献   

6.
《中国化学》2017,35(7):1057-1062
Many materials as immune adjuvant are researched to help raise immnogenicity of subunit vaccines. Among them, peptide‐based hydrogels are gradually coming into notice because of their application in drugs delivery, cancer cell inhibition, vaccine adjuvants and detection of important analytes. In this work, we introduced a novel aromatic capping group based on indole to construct short peptide‐based supramolecular hydrogelators Indol‐GFFY and Indol‐GD FD FD Y and demonstrated their potential applications as vaccine adjuvants.  相似文献   

7.
DNA vaccines encoding a viral protein have been shown to induce antiviral immune responses and provide protection against subsequent viral challenge. The present article deals with the efficacy of a DNA vaccine greatly improved by the simultaneous expression of HBsAg and interferon-γ gene. We constructed a dual expression vector pHIN encoding the HBsAg of Hepatitis B virus and murine IFN-γ which are connected with Internal Ribosome Entry Site(IRES). Mice inmunized with this dual expression DNA vaccine exhibited the enhancement of cellular immune response and increased the production of anti-HBV surface antibody, compared with the mice of single gene expression control. Taken together, these results demonstrate that the application of a cytokine gene in a DNA vaccine formulation as an adjuvant can improve its immunigenicity.  相似文献   

8.
A new approach to enhancing the effectiveness of vaccines is to deliver antigens selectively to dendritic cells (DC) in situ, via monoclonal antibodies specific for particular DC surface molecules. This can markedly enhance CTL responses and, via helper T cells, also enhance antibody responses. DC activation agents or adjuvants must also be administered for effective CTL responses, but in some cases good antibody responses can be obtained without adjuvants. Here we review the role of different DC subsets and different DC target molecules in obtaining enhanced immune responses.  相似文献   

9.
The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, including photoproducts induced by ultraviolet (UV) wavelengths of sunlight. A defining feature of nucleotide excision repair is its dual incision mechanism, in which two nucleolytic incision events on the damaged strand of DNA at sites bracketing the lesion generate a damage‐containing DNA oligonucleotide and a single‐stranded DNA gap approximately 30 nucleotides in length. Although the early events of nucleotide excision repair, which include lesion recognition and the dual incisions, have been explored in detail and are reasonably well understood, the fate of the single‐stranded DNA gaps and excised oligonucleotide products of repair have not been as extensively examined. In this review, recent findings that address these less‐explored aspects of nucleotide excision repair are discussed and support the concept that postincision gap and excised oligonucleotide processing are critical steps in the cellular response to DNA damage induced by UV light and other environmental carcinogens. Defects in these latter stages of repair lead to cell death and other DNA damage signaling responses and may therefore contribute to a number of human disease states associated with exposure to UV wavelengths of sunlight, including skin cancer, aging and autoimmunity.  相似文献   

10.
More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.  相似文献   

11.
Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial–host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.  相似文献   

12.
Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3CSK4, α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.  相似文献   

13.
Co‐assembling vaccines composed of a lipidated HER2‐derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3CSK4, α‐GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen‐specific immunostimulation properties, observed in reported self‐adjuvanting vaccine candidates, by using self‐assembly and adjuvant‐conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co‐assembly with lipidated CH401, which boosted the anti‐CH401 IgG and IgM production. In particular, α‐GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co‐assembling vaccine design opens the door for efficient and practical self‐adjuvanting vaccine development.  相似文献   

14.
To realize effective cancer immunotherapy, Ding et al. constructed a structurally well-defined DNA-based nanodevice to quantitatively assemble cancer cell-specific antigen and multiple adjuvants as a cancer vaccine. This nanodevice vaccine can efficiently accumulate in the draining lymph nodes and respond to the endosomal acidic environment of dendritic cells to release the antigen and adjuvants. These active payloads stimulate dendritic cells maturation and antigen presentation to elicit a robust, antigen-specific cytotoxic T-lymphocyte response to kill cancer cells. This work has been published online in the Nature Materials on Sept.7, 2020.  相似文献   

15.
张文彬 《高分子学报》2021,(4):335-338,I0001
可进体内治病救人的纳米机器人一直是人们梦寐以求的未来科技和医疗手段.最近,国家纳米科学中心的丁宝全、聂广军等在这个方向取得了重要的突破,成功开发了基于DNA纳米机器的癌症免疫治疗疫苗.他们首先利用DNA折纸术构筑了一个可精确负载抗原和佐剂的管状结构,通过皮下注射递送至淋巴结,经由内吞在树突细胞内涵体内发生pH响应性的锁链打开,暴露抗原和佐剂,从而激活树突细胞,产生抗原特异性的T细胞,有效杀伤肿瘤细胞.该疫苗不仅可以有效抑制肿瘤的生长和复发,还诱导特异性记忆效应,可持续产生特异性的保护.这提供了一个精准递送分子药物的平台,让人看到成功发展纳米机器人的曙光,有望给医学和医疗保健带来重要变革.  相似文献   

16.
吴延  金政  赵凯 《化学通报》2023,86(10):1234-1239
疫苗佐剂能够增强机体对抗原的免疫应答反应或改变免疫应答反应类型,延长疫苗在体内作用时间,提高疫苗效力。壳聚糖能有效地将疫苗递送到靶抗原递呈细胞或组织,激活抗原提呈细胞,诱导产生免疫应答,促进Th1/Th2应答反应的平衡,因此,壳聚糖作为疫苗佐剂具有一定的潜力。为了解决壳聚糖在中性和碱性溶液中溶解性差,以及进一步提高其黏膜黏附性和靶向性等问题,通过对壳聚糖进行化学改性,生成一系列壳聚糖衍生物,提高其佐剂性能。本论文就近年来有关壳聚糖及其衍生物作为疫苗佐剂和递送系统在疫苗中的应用进行了综述,总结并提出了壳聚糖及其衍生物在疫苗佐剂应用领域所面临的问题以及其未来的发展方向,使读者对其有全面的了解。  相似文献   

17.
Aluminum-containing adjuvants used in vaccine formulations suffer from low cellular immunity, severe aggregation, and accumulation in the brain. Conventional aluminosilicates widely used in the chemical industry focus mainly on acidic sites for catalytic applications, but they are rarely used as adjuvants. Reported here is an innovative “ligand-assisted steric hindrance” strategy to create a high density of six-coordinate VIAl−OH groups with basicity on dendritic mesoporous silica nanoparticles as new nanoadjuvants. Compared to four-coordinate IVAl-modified counterparts, VIAl−OH-rich aluminosilicate nanoadjuvants enhance cellular delivery of antigens and provoke stronger cellular immunity. Moreover, the aluminum accumulation in the brain is more reduced than that with a commercial adjuvant. These results show that coordination chemistry can be used to control the adjuvanticity, providing new understanding in the development of next-generation vaccine adjuvants.  相似文献   

18.
In comparison with cationic liposomes, catanionic vesicles possess more attractive properties such as stability and lower cost, and these characteristics may make them suitable as a non-viral vehicle and for other biomedical applications such as vaccine adjuvants. However, very little is known about their possible cytotoxic mechanisms in cellular system. Also, this information is vital for the future development of safe biomedical systems. In the current study, the cytotoxic effect of catanionic vesicles, consisting of anionic surfactant (SDS), cationic surfactant (HTMAB), and cholesterol, in cultured RAW 264.7 murine macrophage-like cells was determined. The treatment of catanionic vesicles produced a dose-dependent effect on macrophage cells. RAW 264.7 cells exposed to catanionic vesicles exhibited morphological features of apoptosis such as chromatin condensation. Typical apoptotic ladders were observed in DNA extracted from RAW 264.7 cells treated by catanionic vesicles. Analysis from flow cytometry demonstrated an increase of hypodiploid DNA population (sub-G1) and a simultaneous decrease of diploid DNA content, indicating that DNA cleavage occurred after exposure of the cells with catanionic vesicles. In addition, it was shown that pretreatment of RAW 264.7 cells with the general caspase inhibitor (zVAD-fmk) did not prevent apoptosis induced by catanionic vesicles, suggesting that apoptosis in macrophage cells followed a caspase-independent pathway induced by catanionic vesicles. These data provide novel insight into the effect of catanionic vesicles on the mechanisms of cell death induced by catanionic vesicles.  相似文献   

19.
《中国化学快报》2021,32(10):3011-3014
A facile and efficient strategy was established for the construction of RC-529 and its derivatives. Four conjugates of RC-529 derivatives with Tn antigen were synthesized and all elicited strong and T cell-dependent immune responses in mice without requiring external adjuvants. In addition, all antisera induced by these conjugates could specifically recognize, bind to and kill Tn-overexpressing cancer cells. Thus, RC-529 shows promise as a useful platform for the development of new vaccine carriers with self-adjuvanting properties for the treatment of cancer. Moreover, preliminary structure-activity relationship analysis provides convincing support for further optimization of, and additional investigation into, RC-529.  相似文献   

20.
In a new concept of fully synthetic vaccines, the role of T‐helper cells is emphasized. Here, a synthetic antitumor vaccine consisting of a diglycosylated tumor‐associated MUC1 glycopeptide as the B‐cell epitope was covalently cross‐linked with three different T‐helper‐cell epitopes via squaric acid ligation of two linear (glyco)peptides. In mice this four‐component vaccine administered without external immune‐stimulating promoters elicit titers of MUC1‐specific antibodies that were about eight times higher than those induced by a vaccine containing only one T‐helper‐cell epitope. The promising results indicate that multiple activation of different T‐helper cells is useful for applications in which increased immunogenicity is required. In personalized medicine, in particular, this flexible construction of a vaccine can serve as a role model, for example, when T‐helper‐cell epitopes are needed that match human leukocyte antigens (HLA) in different patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号