首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Genome sequences of social amoebae reveal the presence of terpene cyclases (TCs) in these organisms. Two TCs from Dictyostelium discoideum converted farnesyl diphosphate into (2S,3R,6S,9S)‐(?)‐protoillud‐7‐ene and (3S)‐(+)‐asterisca‐2(9),6‐diene. The enzyme mechanisms and EI‐MS fragmentations of the products were studied by labeling experiments.  相似文献   

2.
An uncharacterized terpene cyclase from Streptomyces pratensis was identified as (+)‐(1(10)E,4E,6S,7R)‐germacradien‐6‐ol synthase. The enzyme product exists as two interconvertible conformers, resulting in complex NMR spectra. For the complete assignment of NMR data, all fifteen (13C1)FPP isotopomers (FPP=farnesyl diphosphate) and (13C15)FPP were synthesized and enzymatically converted. The products were analyzed using various NMR techniques, including 13C, 13C COSY experiments. The (13C)FPP isotopomers were also used to investigate the thermal rearrangement and EI fragmentation of the enzyme product.  相似文献   

3.
Non‐natural terpenoids offer potential as pharmaceuticals and agrochemicals. However, their chemical syntheses are often long, complex, and not easily amenable to large‐scale production. Herein, we report a modular chemoenzymatic approach to synthesize terpene analogues from diphosphorylated precursors produced in quantitative yields. Through the addition of prenyl transferases, farnesyl diphosphates, (2E,6E)‐FDP and (2Z,6Z)‐FDP, were isolated in greater than 80 % yields. The synthesis of 14,15‐dimethyl‐FDP, 12‐methyl‐FDP, 12‐hydroxy‐FDP, homo‐FDP, and 15‐methyl‐FDP was also achieved. These modified diphosphates were used with terpene synthases to produce the unnatural sesquiterpenoid semiochemicals (S)‐14,15‐dimethylgermacrene D and (S)‐12‐methylgermacrene D as well as dihydroartemisinic aldehyde. This approach is applicable to the synthesis of many non‐natural terpenoids, offering a scalable route free from repeated chain extensions and capricious chemical phosphorylation reactions.  相似文献   

4.
The diastereomeric hemicryptophane oxidovanadium(V) complexes (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 have been synthesized. 1H and 51V NMR spectra in solution are consistent with the formation of Λ and Δ forms of the propeller‐like vanatrane moiety, leading to two diastereomeric conformers for each complex: that is, (P)‐(S,S,S‐Λ)‐ 3 /(P)‐(S,S,S‐Δ)‐ 3 and (M)‐(S,S,S‐Λ)‐ 4 /(M)‐(S,S,S‐Δ)‐ 4 . The Λ/Δ ratio is rather temperature‐insensitive but strongly dependent on the solvent (the de of (M)‐(S,S,S)‐ 4 changes from 0 in benzene to 92 % in DMSO). The solvent therefore controls the preferential clockwise or anticlockwise orientation of the propeller‐like atrane unit. The energy barriers for the Λ?Δ equilibrium were determined by NMR experiments, and the highest ΔG value (103.7 kJ mol?1) was obtained for (P)‐(S,S,S)‐ 3 , much higher than those reported for other atrane derivatives. This is attributed to the constraints arising from the cage structure. Determination of the activation parameters provides evidence for a concerted, rather than a stepwise, interconversion mechanism with entropies (ΔS) of ?243 and ?272 J mol?1 K?1 for (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 , respectively. The molecular structure of the (P)‐(S,S,S‐Λ)‐ 3 isomer was solved by X‐ray diffraction and shows a distorted structure with one of the linkers located in the CTV cavity. Complementary quantum chemical calculations were carried out to obtain the energy‐minimized structures of (P)‐(S,S,S)‐ 3 and (M)‐(S,S,S)‐ 4 . Our density functional theory calculations suggest that the (P)‐(S,S,S‐Λ)‐ 3 is favored, in agreement with experimental data. For the M series, a similar strategy was used to extract molecular structures and relative energies. As in the case of the P diastereomer, the Λ form dominates over the Δ one.  相似文献   

5.
Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels–Alder reaction between furan‐2(5H)‐one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4R,7S,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 2 ) and (3aS,4S,7R,7aR)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4R,7S,7aS)‐3a,4,7,7a‐tetrahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 3 ). The endo adduct ( 2 ) was brominated to afford (3aR,4R,5R,7R,7aS,8R)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aS,4S,5S,7S,7aR,8S)‐5,8‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 4 ) and (3aS,4R,5R,6S,7S,7aR)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one and (3aR,4S,5S,6R,7R,7aS)‐5,6‐dibromohexahydro‐4,7‐methanoisobenzofuran‐1(3H)‐one ( 5 ). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non‐classical assay structures with the aid of computational calculations. Computation to predict the 13C and 1H chemical shifts for mean absolute error analyses have been carried out by gauge‐including atomic orbital method at M06‐2X/6‐31+G(d,p) and B3LYP/6‐311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds ( 4 ) and ( 5 ) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical 1H and 13C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

7.
Wittig olefination of (2S,3R,5S,6R)‐5‐(acetyloxy)‐tetrahydro‐6‐[(methoxymethoxy)methyl]‐3‐(phenylthio)‐ 2H‐pyran‐2‐acetaldehyde ((+)‐ 10 ) with {2‐[(2S,3R,4R,5R,6S)‐tetrahydro‐3,4,5‐tris(methoxymethoxy)‐6‐methyl‐ 2H‐pyran‐2‐yl]ethyl}triphenylphosphonium iodide ((?)‐ 11 ) gave a (Z)‐alkene derivative (+)‐ 12 that was converted into (αR,2R,3S,4R,5R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐5‐(phenylthio)‐6‐{(2Z)‐4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]but‐2‐enyl}2H‐pyran‐4‐acetic acid ( 8 ), (αR,2R,3S,4R,6S)‐tetrahydro‐α,3‐dihydroxy‐2‐(hydroxymethyl)‐6‐{4‐[(2S,3S,4R,5S,6S)‐tetrahydro‐3,4,5‐trihydroxy‐6‐methyl‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐4‐acetic acid ( 9 ), and simpler analogues without the hydroxyacetic side chain such as (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z)‐4‐[(2S,3R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐3‐(phenylthio)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 30 ), (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{[(2S,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]butyl}‐2H‐pyran‐3,4,5‐ triol ((?)‐ 41 ) and (2S,3S,4R,5S,6S)‐tetrahydro‐6‐methyl‐2‐{(2Z/E))‐4‐[(2R,5S,6R)‐tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐2‐yl]but‐2‐enyl}‐2H‐pyran‐3,4,5‐triol ( 43 ). The key intermediates (+)‐ 10 and (?)‐ 11 were derived from isolevoglucosenone and from L ‐fucose, respectively. The following IC50 values were measured in a ELISA test for the affinities of sialyl Lewis x tetrasaccharide, 8, 9, 30 , (?)‐ 41 , and 43 toward P‐selectin: 0.7, 2.5–2.8, 7.3–8.0, 5.3–5.9, 5.0–5.2, and 3.4–4.1 mM , respectively.  相似文献   

8.
2‐Methylisocitrate (=3‐hydroxybutane‐1,2,3‐tricarboxylic acid) is an intermediate in the oxidation of propanoate to pyruvate (=2‐oxopropanoate) via the methylcitrate cycle in both bacteria and fungi (Scheme 1). Stereocontrolled syntheses of (2R,3S)‐ and (2S,3R)‐2‐methylisocitrate (98% e.e.) were achieved starting from (R)‐ and (S)‐lactic acid (=(2R)‐ and (2S)‐2‐hydroxypropanoic acid), respectively. The dispiroketal (6S,7S,15R)‐15‐methyl‐1,8,13,16‐tetraoxadispiro[5.0.5.4]hexadecan‐14‐one ( 2a ) derived from (R)‐lactic acid was deprotonated with lithium diisopropylamide to give a carbanion that was condensed with diethyl fumarate (Scheme 3). The configuration of the adduct diethyl (2S)‐2‐[(6S,7S,14R)‐14‐methyl‐15‐oxo‐1,8,13,16‐tetraoxadispiro[5.0.5.4]hexadec‐14‐yl]butanedioate ( 3a ) was assigned by consideration of possible transition states for the fumarate condensation (cf. Scheme 2), and this was confirmed by a crystal‐structure analysis. The adduct was subjected to acid hydrolysis to afford the lactone 4a of (2R,3S)‐2‐methylisocitrate and hence (2R,3S)‐2‐methylisocitrate. Similarly, (S)‐lactic acid led to (2S,3R)‐2‐methylisocitrate. Comparison of 2‐methylisocitrate produced enzymatically with the synthetic enantiomers established that the biologically active isomer is (2R,3S)‐2‐methylisocitrate.  相似文献   

9.
A series of new C2‐symmetric (1S,2S)‐cyclohexane‐1,2‐dicarboxamides was synthesized from (1S,2S)‐cyclohexane‐1,2‐dicarbonyl dichloride and N‐benzyl‐substituted aromatic amines, which were prepared from 2‐aminopyridine, 2‐chloroaniline, and 2‐aminophenol via imine formation with benzaldehyde and subsequent reduction with NaBH4. (1S,2S)‐N,N′‐Dibenzyl‐N,N′‐bis[2‐(benzyloxy)phenyl]cyclohexane‐1,2‐dicarboxamide was converted to (1S,2S)‐N,N′‐dibenzyl‐N,N′‐bis(2‐hydroxyphenyl)cyclohexane‐1,2‐dicarboxamide via hydrogenolysis in the presence of Pd(OH)2 on active carbon powder.  相似文献   

10.
Three diastereomeric second‐generation (G2) dendrons were prepared by using (2S,4S)‐, (2S,4R)‐, and (2R,4S)‐4‐aminoprolines on the multigram scale with highly optimized and fully reproducible solution‐phase methods. The peripheral 4‐aminoproline branching units of all the dendrons have the 2S,4S configuration throughout, whereas those units at the focal point have the 2S,4S, 2S,4R, and 2R,4S configurations. These latter configurations led to the dendrons being named (2S,4S)‐ 1 , (2S,4R)‐ 1 , and (2R,4S)‐ 1 , respectively. The 4‐aminoproline derivatives used in this study are new, although many closely related compounds exist. Their syntheses were optimized. The dendron assembly involved amide coupling, the efficiency of which was also optimized by employing the following well‐known reagents: EDC/HOBt, DCC/HOSu, TBTA/HOBt, TBTU/HOBt, BOP/HOBt, pentafluorophenol, and PyBOP/HOBt. It was found that the use of PyBOP is by far the best for dendrons (2S,4S)‐ 1 and (2R,4S)‐ 1 , and pentafluorophenol active ester is best for (2S,4R)‐ 1 . Because of their multigram scale, all couplings were done in solution instead of by solid‐phase procedures. Purifications were, nevertheless, easy. The optical purities of the key intermediates as well as the three G2 dendrons were analyzed by chiral HPLC analysis. These novel, diastereomeric second‐generation dendrons have a rather compact and conformationally highly rigid structure that makes them interesting candidates for applications, for example, in the field of dendronized polymers and in organocatalysis.  相似文献   

11.
The inositol rings in (1S,2R,3R,4S,5S,6R,7S,8S,11S)‐myo‐inositol‐1,2‐camphor acetal {systematic name: (1R,2S,3S,4R,5S,6R)‐5,6‐[(1S,2S,4S)‐1,7,7‐trimethyl­bicyclo­[2.2.1]heptane‐2,2‐diyldi­oxy]cyclohexane‐1,2,3,4‐tetrol}, C16H26O6, and (1R,2S,3S,4R,5R,6S,7R/S,8S,11S)‐myo‐inositol‐1,2‐camphor acetal trihydrate {systematic name: (1S,2R,3R,4S,5R,6S)‐5,6‐[(1S,4S,6R/S)‐1,7,7‐trimethyl­bicyclo­[2.2.1]heptane‐2,2‐diyldi­oxy]cyclohexane‐1,2,3,4‐tetrol trihydrate}, C16H26O6·3H2O, adopt flattened chair conformations with the latter crystal containing two stereoisomers in a 0.684 (2):0.316 (2) ratio, similar to that found both in solution and by calculation. Both mol­ecules pack in the crystals in similar two‐dimensional layers, utilizing strong O—H⋯O hydrogen bonds, with the trihydrate cell expanded to incorporate the additional hydrogen‐bonded water mol­ecules.  相似文献   

12.
Two novel and three new sterol glycosides were isolated from the MeOH extract of the aerial parts of Ajuga salicifolia (L.) Schreber . The structures of the compounds were elucidated as (3R,16S,17S,20R,22S,23S, 24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐17‐ol ( 1 ), (3R,16S,17S, 20R,22S,23S,24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}coprostigmast‐7‐en‐17‐ol ( 2 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3,27‐bis(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 3 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}‐27‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 4 ), and (3R,16R,17S,20R,22S,23S, 24S,25S)‐22,25‐epoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐ene‐16,17,23,27‐tetrol 27‐acetate ( 5 ) by means of 1D and 2D NMR spectroscopy and HR‐MALDI mass spectrometry. The novel compounds, which consist of three additional ring systems at the coprostigmastane skeleton, were named ajugasalicioside A ( 1 ) and B ( 2 ), and the new compounds C ( 3 ), D ( 4 ) and E ( 5 ). In our cytotoxicity assays (HeLa cells, Jurkat T cells, and peripheral mononuclear blood cells), ajugasaliciosides A–D specifically inhibited the viability and growth of Jurkat T‐leukemia cells at concentrations below 10 μM . Ajugasalicioside A ( 1 ; (IC50=6 μM ) and C ( 3 ; IC50=3 μM ) were the most active compounds. Ajugasalicioside A ( 1 ) induced cell‐cell contact, inhibited Jurkat T cell proliferation, and up‐regulated mRNA levels of the cell‐cycle regulator cyclin D1, which might be an indication for cell differentiation. Furthermore, 1 down‐regulated the mRNA levels of the NF‐κB subunit p65 in a concentration‐dependent manner. These effects were not found for ajugasalicioside B ( 2 ), which has an additional glucose unit, and the onset of cytotoxicity of 2 (IC50=10 μM ) was delayed by 24 h.  相似文献   

13.
As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β‐agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)‐6‐acetoxy‐4,9‐dihydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O11, ( II ), (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O10, ( III ), and (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐10‐(benzoyloxy)‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepin‐5‐yl furan‐3‐carboxylate, C29H34O9, ( IV ), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C 73 , 451–457]. In the (isomorphic) structures of ( II ) and ( III ), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in ( II ) and no substituent in ( III ). This position is also unsubstituted in ( IV ), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in ( II ) and 1S,4S,5S,6R,7R,9S,10S in ( III ) and ( IV ), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in ( II ) and H in ( III ) and ( IV ). This diversity in substitution, in turn, is responsible for the differences in the hydrogen‐bonding schemes, which is discussed.  相似文献   

14.
Two new highly oxidized humulane sesquiterpenes, mitissimols F ( 1 ) and G ( 2 ), were isolated from the fruiting bodies of Lactarius mitissimus. Their structures were elucidated by using extensive spectroscopic techniques including 1D‐ and 2D‐NMR experiments. The absolute configuration of mitissimol F ( 1 ) was determined by 1H‐NMR resolution of its diastereoisomeric α‐methoxy‐α‐(trifluoromethyl)benzeneacetates (MTPA). It was shown to be (1S,3E,6S,8R,9R,10S,11R)‐8,9 : 10,11‐diepoxy‐1,6‐dihydroxyhumul‐3‐en‐5‐one (=(1S,2R,4R,6S,8E,11S,12R)‐6,11‐dihydroxy‐1,6,10,10‐tetramethyl‐3,13‐dioxatricyclo[10.1.0.02,4]tridec‐8‐en‐7‐one).  相似文献   

15.
The total synthesis and stereochemical structural elucidation of JBIR‐39, containing four nonproteinogenic piperazic acid (Piz) residues, is reported. The synthesis includes Sc(OTf)3‐catalyzed acylation of a Piz(γ‐OTBS) derivative with piperazic acid chloride, providing the desired Piz‐Piz(γ‐OTBS) dipeptide in high yield without epimerization. After assembling two additional Piz moieties and (S)‐isoleucic acid at the N‐terminus, amidation with the (R)‐α‐methylserine ester at the C‐terminus, and deprotection afforded the desired (2R,8S)‐hexapeptide, which is the assumed structure of JBIR‐39. Although the spectral data of the (2R,8S)‐hexapeptide was not identical to JBIR‐39, further synthesis of three stereoisomers confirmed the stereochemical structure of JBIR‐39 to be (2S,6S,8S,11R,16S,21R,26S,27S).  相似文献   

16.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

17.
MS Binding Assays represent a label‐free alternative to radioligand binding assays. In this study, we present an LC‐ESI‐MS/MS method for the quantification of (R,R)‐4‐(2‐benzhydryloxyethyl)‐1‐(4‐fluorobenzyl)piperidin‐3‐ol [(R,R)‐D‐84, (R,R)‐ 1 ], (S,S)‐reboxetine [(S,S)‐ 2 ], and (S)‐citalopram [(S)‐ 3 ] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)‐D‐84], norepinephrine [NET, (S,S)‐reboxetine] and serotonin transporter [SERT, (S)‐citalopram], respectively. The developed LC‐ESI‐MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC‐ESI‐MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration‐based MS Binding Assays were performed for all three monoamine transporters based on this LC‐ESI‐MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)‐D‐84 toward hDAT, for (S,S)‐reboxetine toward hNET, and for (S)‐citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far.  相似文献   

18.
(6′S)‐ and (6′R)‐‘Capsorubol‐6‐one' (=(3S,3′S,5R,5′R,6′S)‐ and (3S,3′S,5R,5′R,6′R)‐3,3′,6′‐trihydroxy‐κ,κ‐caroten‐6‐one; 8 and 9 , resp.), (6S,6′R)‐ and (6R,6′R)‐capsorubol (=3S,3′S,5R,5′R,6S,6′R)‐ and (3S,3′S,5R,5′R,6R,6′R)‐κ,κ‐carotene‐3,3′,6,6′‐tetrol; 11 and 12 , resp.) and (6′S)‐ and (6′R)‐cryptocapsol (=(3′S,5′R,6′S)‐ and (3′S,5′R,6′R)‐β,κ‐carotene‐3′,6′‐diol; 5 and 6 , resp.) were prepared in crystalline from by the reduction of capsorubin (=(3S,3′S,5R,5′R)‐3,3′‐dihydroxy‐κ,κ‐carotene‐6,6′‐dione; 7 ) and cryptocapsin (=(3′S,5′R)‐3′‐hydroxy‐β,κ‐caroten‐6′‐one; 4 ) and characterized by their UV/VIS, CD, 1H‐NMR, and mass spectra.  相似文献   

19.
The total synthesis of (?)‐pinellic acid with (9S,12S,13S)‐configuration and its (9R,12S,13S)‐diastereoisomer was achieved in high overall yields from a common intermediate derived from (+)‐L ‐diethyl tartrate.  相似文献   

20.
The absolute configuration of decipinone ( 2 ), a myrsinane‐type diterpene ester previously isolated from Euphorbia decipiens, has been determined by NMR study of its axially chiral derivatives (aR)‐ and (aS)‐N‐hydroxy‐2′‐methoxy‐1,1′‐binaphthalene‐2‐carboximidoyl chloride ((aR)‐MBCC ( 3a ) and (aS)‐MBCC ( 3b )). The absolute configurations at C(7) and C(13) of 2 determined were (R) and (S), respectively. Therefore, considering the relative configuration of 2 , the absolute configuration determined was (2S,3S,4R,5R,6R,7R,11S,12R,13S,15R).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号