首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The enantioselective tandem reaction of β,γ‐unsaturated α‐ketoesters with β‐alkynyl ketones was realized by a bimetallic catalytic system of achiral AuΙΙΙ salt and chiral N,N′‐dioxide‐MgΙΙ complex. The cycloisomerization of β‐alkynyl ketone and asymmetric intermolecular [4+2] cycloaddition with β,γ‐unsaturated α‐ketoesters subsequently occurred, providing an efficient and straightforward access to chiral multifunctional 6,6‐spiroketals in up to 97 % yield, 94 % ee and >19/1 d.r. Besides, a catalytic cycle was proposed based on the results of control experiments.  相似文献   

2.
Yi Yang  Daming Du 《中国化学》2014,32(9):853-858
An efficient enantioselective cascade sulfa‐Michael/Michael addition reaction of trans‐3‐(2‐mercaptophenyl)‐2‐propenoic acid ethyl ester with nitroalkenes catalyzed by a chiral squaramide catalyst was disclosed. This cascade reaction afforded thiochroman derivatives with three contiguous stereocenters in high yields (up to 94%), excellent diastereoselectivities (up to >25:1 dr) and enantioselectivities (up to 99% ee).  相似文献   

3.
Highly efficient asymmetric intermolecular radical‐polar crossover reactions were realized by combining a chiral N,N′‐dioxide/NiII complex catalyst with Ag2O under mild reaction conditions. Various terminal alkenes and indanonecarboxamides/esters underwent radical addition/cyclization reactions to afford spiro‐iminolactones and spirolactones with good to excellent yields (up to 99 %) and enantioselectivities (up to 97 % ee). Furthermore, a range of different radical‐mediated oxidation/elimination or epoxide ring‐opening products were obtained under mild reaction conditions. The Lewis acid catalysts exhibited excellent performance and precluded the strong background reaction.  相似文献   

4.
Highly efficient catalytic asymmetric Claisen rearrangements of O‐propargyl β‐ketoesters and O‐allyl β‐ketoesters have been accomplished under mild reaction conditions. In the presence of the chiral N,N′‐dioxide/NiII complex, a wide range of allenyl/allyl‐substituted all‐carbon quaternary β‐ketoesters was obtained in generally good yield (up to 99 %) and high diastereoselectivity (up to 99:1 d.r.) with excellent enantioselectivity (up to 99 % ee).  相似文献   

5.
The first enantioselective conjugate addition of silyl ketene imines to in situ generated indol‐2‐ones was performed in the presence of a chiral N ,N ′‐dioxide/NiII catalyst. This method provides efficient access to chiral β‐alkyl nitriles bearing congested vicinal all‐carbon quaternary stereocenters in up to 90 % yield with 23:1 d.r. and 98 % ee . The products enable facile transformations to chiral pyrroloindoline frameworks and spirocyclohexane oxindole derivatives. A possible transition state was also proposed to explain the origin of the asymmetric induction.  相似文献   

6.
A ZnII complex of a C2‐chiral bisamidine‐type sp2N bidentate ligand ( L R ) possessing two dioxolane rings at both ends catalyzes a highly efficient quinone asymmetric Diels‐Alder reaction (qADA) between o‐alkoxy‐p‐benzoquinones and 1‐alkoxy‐1,3‐butadienes to construct highly functionalized chiral cis‐decalins, proceeding in up to a >99:1 enantiomer ratio with a high generality in the presence of H2O (H2O:ZnII=4–6:1). In the absence of water, little reaction occurs. The loading amount of the chiral ligand can be minimized to 0.02 mol % with a higher Zn/ L R ratio. This first success is ascribed to a supramolecular 3D arrangement of substrates, in which two protons of an “H2O‐ZnII” reactive species make a linear hydrogen bond network with a dioxolane oxygen atom and one‐point‐binding diene; the ZnII atom captures the electron‐accepting two‐points‐binding quinone fixed on the other dioxolane oxygen atom via an n‐π* attractive interaction. The mechanisms has been supported by 1H NMR study, kinetics, X‐ray crystallographic analyses of the related Zn L R complexes, and ligand and substrate structure‐reactivity‐selectivity relationship.  相似文献   

7.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

8.
A PdII‐catalyzed asymmetric aminohydroxylation of 1,3‐dienes with N‐tosyl‐2‐aminophenols was developed by making use of a chiral pyridinebis(oxazoline) ligand. The highly regioselective reaction provides direct and efficient access to chiral 3,4‐dihydro‐2H‐1,4‐benzoxazines in high yield and enantioselectivity (up to 96:4 e.r.). The reaction employs readily available N‐tosyl‐2‐aminophenols as a unique aminohydroxylation reagent and is complementary to known asymmetric aminohydroxylation methods.  相似文献   

9.
An unprecedented Zn(OTf)2‐catalyzed asymmetric Michael addition/cyclization cascade of 3‐nitro‐2H‐chromenes with 3‐isothiocyanato oxindoles has been disclosed. This transformation provides an efficient access to various synthetically important polycyclic spirooxindoles in a highly stereoselective manner under mild conditions (72–99 % yields, up to >95:5 d.r. and >99 % ee). The reaction leads to the formation of three consecutive stereocenters, including 1,3‐nonadjacent tetrasubstituted carbon stereocenters, in a single operation. A bifunctional activation model of the chiral Zn(OTf)2/bis(oxazoline) complex was proposed based on control experiments, wherein the ZnII moiety serves as a Lewis acid and the N atom of the free NH group acts as a Lewis base by a hydrogen‐bonding interaction.  相似文献   

10.
A catalytic asymmetric [3+2] cycloaddition reaction of chiral palladium‐containing N1‐1,3‐dipoles with methyleneindolinones has been successfully developed. The reaction allows an efficient construction of 3,3′‐pyrrolinyl spirooxindoles with high yields and excellent stereoselectivities (up to 93 % yield, 19:1 d.r. and >99 % ee). A synthetic application of this methodology is demonstrated and a stereocontrol mechanism is proposed.  相似文献   

11.
Highly efficient kinetic resolution of 2H‐azirines by an asymmetric imine amidation was achieved in the presence of a chiral N,N′‐dioxide/ScIII complex, thus providing a promising method to obtain the enantioenriched 2H‐azirine derivatives and protecting‐group free aziridines at the same time. It is rare to find an example of N1 of an oxindole participating in a reaction over C3. Moreover, chiral 2H‐azirines were stereospecifically transformed into an unprotected aziridine and α‐amino ketone.  相似文献   

12.
A highly enantioselective hetero‐Diels–Alder reaction of Danishefsky’s diene with α‐ketoesters and isatins has been realized by using a chiral N,N′‐dioxide/MgII complex. In the presence of only 0.1–0.5 mol % catalyst, a series of substrates were transformed into the corresponding tetrasubstituted 2,3‐dihydropyran‐4‐ones in up to 99 % yield and more than 99 % ee in two hours.  相似文献   

13.
Asymmetric anionic polymerizations of 7‐cyano‐7‐alkoxycarbonyl‐1,4‐benzoquinone methides ( 1 ) with various alkoxy groups were performed using chiral initiators such as lithium isopropylphenoxide (iPrPhOLi)/(S)‐(–)‐2,2′‐isopropylidene‐bis(4‐phenyl‐2‐oxazoline) ((–)‐PhBox) and lithium isopropylphenoxide (iPrPhOLi)/(–)‐sparteine ((–)‐Sp) to investigate the effect of the alkoxy groups of alkoxycarbonyl substituent in the monomers 1 and chiral ligands of chiral initiators on the control of chiral center in the formation of polymers. Molar optical rotation values of the polymers were significantly dependent upon alkoxy groups, and the polymers with higher molar optical rotation were obtained in monomers with primary alkoxy groups. The asymmetric anionic oligomerizations of the quinone methides having methoxy( 1a ), ethoxy( 1b ), and n‐propoxy( 1c ) groups with chiral initiators were carried out. Both 1‐mers and 2‐mers were isolated and their optical resolutions were performed to determine the extent of stereocontrol. High stereoselectivity was observed at the propagation reaction, but not at the initiation reaction. The effect of the counterion on the control of chiral center in the formation of the polymer was investigated in the asymmetric anionic polymerizations of 1b with iPrPhOM(M = Li, Na, K)/(–)‐Sp and iPrPhOM(M = Li, Na, K)/(–)‐PhBox initiators and discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII‐catalyzed atroposelective C?H olefination. A broad range of axially chiral biaryl‐2‐amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram‐scale synthesis. The resulting axially chiral biaryl‐2‐amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

15.
The efficient asymmetric Michael addition/intramolecular cyclization of malononitrile with dienones catalyzed by a chiral bifunctional tertiary amine–squaramide catalyst for the synthesis of chiral 2‐amino‐4H‐chromene‐3‐carbonitrile derivatives was developed. The corresponding products were obtained in good to excellent yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee) for most of the bisarylidenecyclopentanones.  相似文献   

16.
A highly efficient majority‐rules effect of poly(quinoxaline‐2,3‐diyl)s (PQXs) bearing 2‐butoxymethyl chiral side chains at the 6‐ and 7‐positions was established and attributed to large ΔGh values (0.22–0.41 kJ mol?1), which are defined as the energy difference between P‐ and M‐helical conformations per chiral unit. A PQX copolymer prepared from a monomer derived from (R)‐2‐octanol (23 % ee) and a monomer bearing a PPh2 group adopted a single‐handed helical structure (>99 %) and could be used as a highly enantioselective chiral ligand in palladium‐catalyzed asymmetric reactions (products formed with up to 94 % ee), in which the enantioselectivity could be switched by solvent‐dependent inversion of the helical PQX backbone.  相似文献   

17.
The asymmetric synthesis of alkynyl and monofluoroalkenyl isoindolinones from N‐methoxy benzamides and α,α‐difluoromethylene alkynes is enabled by C?H activation with a chiral CpRhIII catalyst. Remarkably, product formation is solvent‐dependent; alkynyl isoindolinones are afforded in MeOH (up to 86 % yield, 99.6 % ee) whereas monofluoroalkenyl isoindolinones are generated in iPrCN (up to 98:2 Z/E, 93 % yield, 86 % ee). Mechanistic studies revealed chiral allene and E‐configured alkenyl rhodium species as reaction intermediates. The latter is transformed into the corresponding Z‐configured monofluoroalkene upon protonation in the iPrCN system and into an alkyne by an unusual anti β‐F elimination in the MeOH system. Notably, kinetic resolution processes occur in this reaction. Despite the moderate enantiocontrol for the formation of the chiral allene, the Z‐monofluoroalkenyl isoindolinones and alkynyl isoindolinones were obtained in good enantiopurities by one or two sequential kinetic resolution processes.  相似文献   

18.
A number of novel chiral diamines 3 , (1R,2R)‐N‐monoalkylcyclohexane‐1,2‐diamines, were designed and synthesized from trans‐cyclohexane‐1,2‐diamine and applied to the catalytic asymmetric Henry reaction of benzaldehyde and nitromethane to provide β‐nitroalcohol in high yield (up to 99%) and good enantiomeric excess (up to 89%). By using ligand (1R,2R)‐N1‐(4‐methylpentan‐2‐yl)cyclohexane‐1,2‐diamine ( 3g ), the reaction was optimized in terms of the metal ion, temperature, solvent and base. Further experiments indicated that the complex, 3g –Cu(OAc)2, was an efficient catalyst in the asymmetric Henry reaction between different aldehydes and nitromethane, and the desired products have been obtained with high chemical yields (up to 99%) and high enantiomeric excess (up to 93%). The optimized catalyst promoted the diastereoselective Henry reaction of various aldehyde substrates and nitroalkane, which gave the corresponding anti‐selective adduct with up to 99% yield and 83:17 anti/syn selectivity. Upon scaling up to gram quantities, the β‐nitroalcohol was obtained in good yield (96%) with excellent selectivities (93% ee). The chiral induction mechanism was tentatively explained on the basis of a previously proposed transition‐state model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

20.
In this work, we have successfully synthesized a new family of chiral Schiff base–phosphine ligands derived from chiral binaphthol (BINOL) and chiral primary amine. The controllable synthesis of a novel hexadentate and tetradentate N,O,P ligand that contains both axial and sp3‐central chirality from axial BINOL and sp3‐central primary amine led to the establishment of an efficient multifunctional N,O,P ligand for copper‐catalyzed conjugate addition of an organozinc reagent. In the asymmetric conjugate reaction of organozinc reagents to enones, the polymer‐like bimetallic multinuclear Cu? Zn complex constructed in situ was found to be substrate‐selective and a highly excellent catalyst for diethylzinc reagents in terms of enantioselectivity (up to >99 % ee). More importantly, the chirality matching between different chiral sources, C2‐axial binaphthol and sp3‐central chiral phosphine, was crucial to the enantioselective induction in this reaction. The experimental results indicated that our chiral ligand (R,S,S)‐ L1 ‐ and (R,S)‐ L4 ‐based bimetallic complex catalyst system exhibited the highest catalytic performance to date in terms of enantioselectivity and conversion even in the presence of 0.005 mol % of catalyst (S/C=20 000, turnover number (TON)=17 600). We also studied the tandem silylation or acylation of enantiomerically enriched zinc enolates that formed in situ from copper‐ L4 ‐complex‐catalyzed conjugate addition, which resulted in the high‐yield synthesis of chiral silyl enol ethers and enoacetates, respectively. Furthermore, the specialized structure of the present multifunctional N,O,P ligand L1 or L4 , and the corresponding mechanistic study of the copper catalyst system were investigated by 31P NMR spectroscopy, circular dichroism (CD), and UV/Vis absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号