首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbon atom functionalization via generation of carbanions is the cornerstone of carborane chemistry. In this work, we report the synthesis and structural characterization of free ortho-carboranyl [C2B10H11], a three-dimensional inorganic analog of the elusive phenyl anion that features a “naked” carbanion center. The first example of a stable, discrete C(H)-deprotonated carborane anion was isolated as a completely separated ion pair with a crown ether-encapsulated potassium cation. An analogous approach led to the isolation and structural characterization of a doubly deprotonated 1,1′-bis(o-carborane) anion [C2B10H10]22−, which is the first example of a discrete molecular dicarbanion. These reactive carbanions are key intermediates in carbon vertex chemistry of carborane clusters.

Free three-dimensional carborane carbanions, which are inorganic siblings of deprotonated aryls with the “naked” anionic carbon atom are reported.  相似文献   

2.
Five effects of correction of the asymptotic potential error in density functionals are identified that significantly improve calculated properties of molecular excited states involving charge-transfer character. Newly developed materials-science computational methods are used to demonstrate how these effects manifest in materials spectroscopy. Connection is made considering chlorophyll-a as a paradigm for molecular spectroscopy, 22 iconic materials as paradigms for 3D materials spectroscopy, and the VN defect in hexagonal boron nitride as an example of the spectroscopy of defects in 2D materials pertaining to nanophotonics. Defects can equally be thought of as being “molecular” and “materials” in nature and hence bridge the relms of molecular and materials spectroscopies. It is concluded that the density functional HSE06, currently considered as the standard for accurate calculations of materials spectroscopy, should be replaced, in most instances, by the computationally similar but asymptotically corrected CAM-B3LYP functional, with some specific functionals for materials-use only providing further improvements.

Spectroscopic transitions in materials that involve charge transfer require asymptotically corrected density functionals. As most transitions do have some charge transfer character, use of such methods are generally warranted.  相似文献   

3.
Polyfluorinated, electron-withdrawing, and sterically demanding supporting ligands are of significant value in chemistry. Here we report the assembly and use of a bis(pyrazolyl)borate, [Ph2B(3-(SF5)Pz)2] that combines all such features, and involves underutilized pentafluorosulfanyl substituents. The ethylene and carbonyl chemistry of copper(i) supported by [Ph2B(3-(SF5)Pz)2], a comparison to the trifluoromethylated counterparts involving [Ph2B(3-(CF3)Pz)2], as well as copper catalyzed cyclopropanation of styrene with ethyl diazoacetate and CF3CHN2 are presented. The results from cyclopropanation show that SF5 groups dramatically improved the yields and stereoselectivity compared to the CF3.

Copper–ethylene and carbonyl complexes of the newly developed [Ph2B(3-(SF5)Pz)2] enable the study of ligand steric and electronic effects caused by the –SF5 group (dubbed “super CF3”), and a comparison to the –CF3 bearing analogs.  相似文献   

4.
Layered perovskites have been extensively investigated in many research fields, such as electronics, catalysis, optics, energy, and magnetics, because of the fascinating chemical properties that are generated by the specific structural features of perovskite frameworks. Furthermore, the interlayers of these structures can be chemically modified through ion exchange to form nanosheets. To further expand the modification of layered perovskites, we have demonstrated an advance in the new structural concept of layered perovskite “charge-neutral perovskite layers” by manipulating the perovskite layer itself. A charge-neutral perovskite layer in [CeIVTa2O7] was synthesized through a soft chemical oxidative reaction based on anionic [CeIIITa2O7] layers. The Ce oxidation state for the charge-neutral [CeIVTa2O7] layers was found to be tetravalent by X-ray absorption fine structure (XAFS) analysis. The atomic arrangements were determined through scattering transmission electron microscopy and extended XAFS (EXAFS) analysis. The framework structure was simulated through density functional theory (DFT) calculations, the results of which were in good agreement with those of the EXAFS spectra quantitative analysis. The anionic [CeIIITa2O7] layers exhibited optical absorption in the near infrared (NIR) region at approximately 1000 nm, whereas the level of NIR absorption decreased in the [CeIVTa2O7] charge-neutral layer due to the disappearance of the Ce 4f electrons. In addition, the chemical reactivity of the charge-neutral [CeIVTa2O7] layers was investigated by chemical reduction with ascorbic acid, resulting in the reduction of the [CeIVTa2O7] layers to form anionic [CeIIITa2O7] layers. Furthermore, the anionic [CeIIITa2O7] layers exhibited redox activity which the Ce in the perovskite unit can be electrochemically oxidized and reduced. The synthesis of the “charge-neutral” perovskite layer indicated that diverse features were generated by systematically tuning the electronic structure through the redox control of Ce; such diverse features have not been found in conventional layered perovskites. This study could demonstrate the potential for developing innovative, unique functional materials with perovskite structures.

This study proposed a new layer modification technique, “layer charge control”, for layered perovskites, and the structures of the obtained charge neutral [CeTa2O7] perovskite sheet were characterized theoretically and experimentally.  相似文献   

5.
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5D4 Tb(iii) excited state (20 500 cm−1), energy transfer to 5D4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd(iii) complexes revealed antenna triplet energies between 25 800 and 30 400 cm−1 and a 500-fold increase in quantum yield upon conversion of Tb(L3) to Tb(L4) using the biologically relevant analyte H2S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.

The rational, analyte-mediated modulation of the relative energy of the lanthanide-sensitizing triplet state produces Tb-based luminescence, observable by a conventional optical imager in presence of the Cherenkov radiation emitting radioisotope 18F.  相似文献   

6.
Contactless interactions of micro/nano-particles near electrochemically or chemically active interfaces are ubiquitous in chemistry and biochemistry. Forces arising from a convective field, an electric field or chemical gradients act on different scales ranging from few microns down to few nanometers making their study difficult. Here, we correlated optical microscopy and electrochemical measurements to track at the millisecond timescale the dynamics of individual two-dimensional particles, graphene nanoplatelets (GNPs), when approaching an electrified Pt micro-interface. Our original approach takes advantage of the bipolar feedback current recorded when a conducting particle approaches an electrified surface without electrical contact and numerical simulations to access the velocity of individual GNPs. We evidenced a strong deceleration of GNPs from few tens of μm s−1 down to few μm s−1 within the last μm above the surface. This observation reveals the existence of strongly non-uniform forces between tens of and a thousand nanometers from the surface.

The velocity of single GNP is monitored by contactless bipolar electrochemical feedback over the last hundreds of nm before collision on an electrode, and the variations shed light on the balance of forces acting on these objects near an interface.  相似文献   

7.
Manipulating O2 activation via nanosynthetic chemistry is critical in many oxidation reactions central to environmental remediation and chemical synthesis. Based on a carefully designed plasmonic Ru/TiO2−x catalyst, we first report a room-temperature O2 dissociation and spillover mechanism that expedites the “dream reaction” of selective primary C–H bond activation. Under visible light, surface plasmons excited in the negatively charged Ru nanoparticles decay into hot electrons, triggering spontaneous O2 dissociation to reactive atomic ˙O. Acceptor-like oxygen vacancies confined at the Ru–TiO2 interface free Ru from oxygen-poisoning by kinetically boosting the spillover of ˙O from Ru to TiO2. Evidenced by an exclusive isotopic O-transfer from 18O2 to oxygenated products, ˙O displays a synergistic action with native ˙O2 on TiO2 that oxidizes toluene and related alkyl aromatics to aromatic acids with extremely high selectivity. We believe the intelligent catalyst design for desirable O2 activation will contribute viable routes for synthesizing industrially important organic compounds.

Room-temperature O2 dissociation and spillover, as driven by plasmonic Ru on oxygen-deficient TiO2, expedite the selective oxidation of primary C–H bonds in alkyl aromatics for synthesizing industrially important organic compounds.  相似文献   

8.
Theoretical investigations on chemical reactions allow us to understand the dynamics of the possible pathways and identify new unexpected routes. Here, we develop a global analytical potential energy surface (PES) for the OH + CH3F reaction in order to perform high-level dynamics simulations. Besides bimolecular nucleophilic substitution (SN2) and proton abstraction, our quasi-classical trajectory computations reveal a novel oxide ion substitution leading to the HF + CH3O products. This exothermic reaction pathway occurs via the CH3OH⋯F deep potential well of the SN2 product channel as a result of a proton abstraction from the hydroxyl group by the fluoride ion. The present detailed dynamics study of the OH + CH3F reaction focusing on the surprising oxide ion substitution demonstrates how incomplete our knowledge is of fundamental chemical reactions.

Reaction dynamics simulations on a high-level ab initio analytical potential energy surface reveal a novel oxide ion substitution channel for the OH + CH3F reaction.  相似文献   

9.
Correction for ‘Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes’ by Nathan Corbin et al., Chem. Sci., 2021, DOI: 10.1039/D1SC02413B.

We regret that there was a minor error in the structure of the benzyl chloride in Scheme 2, Fig. 2 and the ESI. The structure of the benzyl chloride should be 4-methyl benzyl chloride but was instead given as 3-methyl benzyl. The correct figure and scheme are shown below, and the ESI has been updated.Open in a separate windowFig. 2(A) Comparison of acid yields for non-sacrificial-anode and sacrificial-anode carboxylation of various substrates. (B) Ratio of carboxylic acid to nucleophilic side products (ester + carbonate + alcohol) for various systems and substrates. Effect of adding MgBr2 to the sacrificial-anode system on the (C) acid yield and (D) ratio of acid to SN2 side products for benzyl bromide. Acid yields are tabulated in Table S6.† ND: acid not detected (acid-to-SN2 ratio <0.1).Open in a separate windowScheme 2Substrate scope for the sacrificial-anode-free electrochemical carboxylation of organic halides. aStandard reaction conditions: 100 mM electrolyte, 100 mM substrate, 100 mM MgBr2, silver cathode, platinum anode, 20 sccm CO2, 2.2 mL DMF, −20 mA cm−2 for 3.5 h. TBA-Br was used for chlorinated substrates because bromide oxidizes more readily than chloride, and only a small amount of chloride was replaced by bromide (<1% for the alkyl chloride, ∼4% for the benzylic chloride). Yields are referenced to the initial amount of substrate and were calculated from 1H NMR spectroscopy using either 1,3,5-trimethoxybenzene or ethylene carbonate as internal standards. b−15 mA cm−2 instead of −20 mA cm−2. c150 mM MgBr2 instead of 100 mM MgBr2.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

10.
Nucleic acid-based dissipative, out-of-equilibrium systems are introduced as functional assemblies emulating transient dissipative biological transformations. One system involves a Pb2+-ion-dependent DNAzyme fuel strand-driven network leading to the transient cleavage of the fuel strand to “waste” products. Applying the Pb2+-ion-dependent DNAzyme to two competitive fuel strand-driven systems yields two parallel operating networks. Blocking the competitively operating networks with selective inhibitors leads, however, to gated transient operation of dictated networks, yielding gated catalytic operations. A second system introduces a “non-waste” generating out-of-equilibrium, dissipative network driven by light. The system consists of a trans-azobenzene-functionalized photoactive module that is reconfigured by light to an intermediary state consisting of cis-azobenzene units that are thermally recovered to the original trans-azobenzene-modified module. The cyclic transient photoinduced operation of the device is demonstrated. The kinetic simulation of the systems allows the prediction of the transient behavior of the networks under different auxiliary conditions.

Functional DNA modules are triggered in the presence of appropriate inhibitors to yield transient gated catalytic functions, and a photoresponsive DNA module leads to “waste-free” operation of transient, dissipative dynamic transitions.  相似文献   

11.
Fluorosis has been regarded as a worldwide disease that seriously diminishes the quality of life through skeletal embrittlement and hepatic damage. Effective detection and removal of fluorinated chemical species such as fluoride ions (F) and perfluorooctanoic acid (PFOA) from drinking water are of great importance for the sake of human health. Aiming to develop water-stable, highly selective and sensitive fluorine sensors, we have designed a new luminescent MOF In(tcpp) using a chromophore ligand 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4tcpp). In(tcpp) exhibits high sensitivity and selectivity for turn-on detection of F and turn-off detection of PFOA with a detection limit of 1.3 μg L−1 and 19 μg L−1, respectively. In(tcpp) also shows high recyclability and can be reused multiple times for F detection. The mechanisms of interaction between In(tcpp) and the analytes are investigated by several experiments and DFT calculations. These studies reveal insightful information concerning the nature of F and PFOA binding within the MOF structure. In addition, In(tcpp) also acts as an efficient adsorbent for the removal of F (36.7 mg g−1) and PFOA (980.0 mg g−1). It is the first material that is not only capable of switchable sensing of F and PFOA but also competent for removing the pollutants via different functional groups.

A robust In-MOF, In(tcpp), demonstrates sensitive detection of the fluorinated chemical species F and PFOA via distinctly different luminescence signal change, and effective adsorption and removal of both species from aqueous solution.  相似文献   

12.
Real-time autodetachment dynamics of the loosely bound excess electron from the vibrational Feshbach resonances of the dipole-bound states (DBS) of 4-bromophonoxide (4-BrPhO) and 4-chlorophenoxide (4-ClPhO) anions have been thoroughly investigated. The state-specific autodetachment rate measurements obtained by the picosecond time-resolved pump-probe method on the cryogenically cooled anions exhibit an exceptionally long lifetime (τ) of ∼823 ± 156 ps for the 11′1 vibrational mode of the 4-BrPhO DBS. Strong mode-dependency in the wide dynamic range has also been found, giving τ ∼ 5.3 ps for the 10′1 mode, for instance. Though it is nontrivial to get the state-specific rates for the 4-ClPhO DBS, the average autodetachment lifetime of the 19′120′1/11′1 mode has been estimated to be ∼548 ± 108 ps. Observation of these exceptionally slow autodetachment rates of vibrational Feshbach resonances strongly indicates that the correlation effect may play a significant role in the DBS photodetachment dynamics. Fermi''s golden rule has been invoked so that the correlation effect is taken into account in the form of the interaction between the charge and the induced dipole where the latter is given by the polarizable counterparts of the electron-rich halogenated compound and the diffuse non-valence electron. This report suggests that one may measure, from the real-time autodetachment dynamics, the extent of the correlation effect contribution to the stabilization and/or dynamics of the excess non-valence electron among many different types of long-range interactions of the DBS.

Exceptionally slow autodetachment dynamics of the vibrational Feshbach resonances found in the dipole-bound state of 4-bromophonoxide (4-BrPhO) or 4-chlorophenoxide (4-ClPhO) anions reveals the associated dynamic role of the correlation effect.  相似文献   

13.
Crystalline supramolecular architectures mediated by cations, anions, ion pairs or neutral guest species are well established. However, the robust crystallization of a well-designed receptor mediated by labile anionic solvate clusters remains unexplored. Herein, we describe the synthesis and crystalline behaviors of a trimacrocyclic hexasubstituted benzene 2 in the presence of guanidium halide salts and chloroform. Halide hexasolvate clusters, viz. [Cl(CHCl3)6], [Br(CHCl3)6], and [I(CHCl3)6], were found to be critical to the crystallization process, as suggested by the single-crystal structures, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and NMR spectroscopy. This study demonstrates the hitherto unexpected role that labile ionic solvate clusters can play in stabilizing supramolecular architectures.

We report the synthesis and robust crystallization of a trimacrocyclic hexasubstituted benzene and guanidium mediated by unprecedented labile halide hexasolvate clusters, viz. [Cl(CHCl3)6], [Br(CHCl3)6], [I(CHCl3)6], and [Br(CHBr3)6].  相似文献   

14.
A new class of C^C^N ligand-containing carbazolylgold(iii) dendrimers has been designed and synthesized. High photoluminescence quantum yields of up to 82% in solid-state thin films and large radiative decay rate constants in the order of 105 s−1 are observed. These gold(iii) dendrimers are found to exhibit thermally activated delayed fluorescence (TADF), as supported by variable-temperature emission spectroscopy, time-resolved photoluminescence decay and computational studies. Solution-processed organic light-emitting diodes (OLEDs) based on these gold(iii) dendrimers have been fabricated, which exhibit a maximum current efficiency of 52.6 cd A−1, maximum external quantum efficiency of 15.8% and high power efficiency of 41.3 lm W−1. The operational stability of these OLEDs has also been recorded, with the devices based on zero- and second-generation dendrimers showing maximum half-lifetimes of 1305 and 322 h at 100 cd m−2, respectively, representing the first demonstration of operationally stable solution-processed OLEDs based on gold(iii) dendrimers.

A new class of carbazolylgold(iii) C^C^N dendrimers with thermally activated delayed fluorescence properties has been designed and synthesized for the realzaqtion of operationally stable solution-processed organic light-emitting devices.  相似文献   

15.
Despite the success of monochromatic hyperfluorescent (HF) organic light-emitting diodes (OLEDs), high-efficiency HF white OLEDs (WOLEDs) are still a big challenge. Herein, we demonstrate HF WOLEDs with state-of-the-art efficiencies, featuring a quasi-bilayer emissive layer (EML) composed of an ultrathin (0.1 nm) blue fluorescence (FL) emitter (TBPe) layer and a layer of thermally activated delayed fluorescence (TADF) sensitizer matrix heavily doped with a yellow FL emitter (TBRb, 3%). Based on an asymmetric high-energy-gap TADF sensitizer host (PhCzSPOTz), such an “ultrathin blue emitting layer (UTBL)” strategy endowed the HF WOLEDs with a record power efficiency of ∼80 lm W−1, approaching the level of fluorescent tubes. Transient photoluminescence (PL) and electroluminescence (EL) kinetics demonstrate that the spatial separation of TBPe from the TADF sensitizer and TBRb, and the large energy gap between the latter two effectively suppress triplet leakage, in addition to suppressing triplet diffusion in the PhCzSPOTz matrix with anisotropic intermolecular interactions. These results provide a new insight into the exciton allocation process in HF white light-emitting systems.

A thermally activated delayed fluorescence host was developed to realize high-efficiency fluorescence white organic light-emitting diodes (WOLED) through spatial and energy gap effects.  相似文献   

16.
The classical synthesis of quinoids, which involves Takahashi coupling and subsequent oxidation, often gives only low to medium yields. Herein, we disclose the keto–enol-tautomerism-assisted spontaneous air oxidation of the coupling products to quinoids. This allows for the synthesis of various indandione-terminated quinoids in high isolated yields (85–95%). The origin of the high yield and the mechanism of the spontaneous air oxidation were ascertained by experiments and theoretical calculations. All the quinoidal compounds displayed unipolar n-type transport behavior, and single crystal field-effect transistors based on the micro-wires of a representative quinoid delivered an electron mobility of up to 0.53 cm2 V−1 s−1, showing the potential of this type of quinoid as an organic semiconductor.

Facilitated by the highly efficient Pd-catalyzed coupling and keto–enol-tautomerism-assisted spontaneous air oxidation, various indandione-terminated quinoidal compounds have been synthesized in isolated yields up to 95%.  相似文献   

17.
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA–carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet–triplet energy transfer (TTET) processes (ΔG ∼ −0.19 eV) featured very large Stern–Volmer quenching constants (KSV) approaching or achieving 105 M−1 with bimolecular rate constants between 2 and 3 × 108 M−1 s−1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet–triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern–Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting ηUC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm−2) below that of solar flux integrated across the Zr(iv) photosensitizer''s absorption band (26.7 mW cm−2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.

The LMCT photosensitizer Zr(MesPDPPh)2 paired with DPA-based acceptors enabled low power threshold photochemical upconversion with record-setting quantum efficiencies.  相似文献   

18.
The self-assembly properties of new biocompatible, thermoreversible fluorescent hydrogels, composed of amino acid residues, e.g., l-phenylalanine (PyL-PheOx) and l-tyrosine (PyL-TyrOx), have been reported. Spectroscopic investigations indicate that PyL-PheOx forms π-stacked ‘compact’ aggregates, while ‘loose’ aggregates with stronger CT characteristics are observed for PyL-TyrOx. Both the compounds showed the presence of fibrous networks in the self-assembled state. Circular dichroism spectral studies indicate the formation of M-helical and P-helical structures for PyL-PheOx and PyL-TyrOx, respectively. A striking gel-to-sol transition, caused by oxidative decomposition, is explicitly noticed in the presence of hypochlorite. A mechanistic investigation reveals the oxidation of the acyl aroyl hydrazine core of the gelators in the presence of ClO. In addition to this, change in the fluorescence emission intensity of the hydrogel in the presence of ClO is utilized for the analysis of commercial bleach samples. Gel-coated paper strips are also developed for the on-site detection of ClO. Furthermore, the system is utilized for imaging hypochlorite in live mammalian cells.

The self-assembly properties of new biocompatible, thermoreversible fluorescent hydrogels, composed of amino acid residues have been reported. A unique gel-to-sol transition is triggered by chemodosimetric interaction in the presence of hypochlorite.  相似文献   

19.
Tetrazoles play a prominent role in medicinal chemistry due to their role as carboxylate bioisosteres but have largely been overlooked as C–H functionalisation substrates. We herein report the development of a high-yielding and general procedure for the heterobenzylic C–H functionalisation of 5-alkyltetrazoles in up to 97% yield under batch conditions using a metalation/electrophilic trapping strategy. Through the use of thermal imaging to identify potentially unsafe exotherms, a continuous flow procedure using a flash chemistry strategy has also been developed, allowing products to be accessed in up to 95% yield. This enabled an extremely high productivity rate of 141 g h−1 to be achieved on an entry-level flow system.

We report a α-metalation-substitution of readily deprotected 5-alkyltetrazoles under batch and continuous flow conditions. In flow, thermal imaging enabled identification of an unsafe exotherm and optimisation of a productivity rate of 141 g h−1.  相似文献   

20.
All-solid-state sodium batteries with poly(ethylene oxide) (PEO)-based electrolytes have shown great promise for large-scale energy storage applications. However, the reported PEO-based electrolytes still suffer from a low Na+ transference number and poor ionic conductivity, which mainly result from the simultaneous migration of Na+ and anions, the high crystallinity of PEO, and the low concentration of free Na+. Here, we report a high-performance PEO-based all-solid-state electrolyte for sodium batteries by introducing Na3SbS4 to interact with the TFSI anion in the salt and decrease the crystallinity of PEO. The optimal PEO/NaTFSI/Na3SbS4 electrolyte exhibits a remarkably enhanced Na+ transference number (0.49) and a high ionic conductivity of 1.33 × 10−4 S cm−1 at 45 °C. Moreover, we found that the electrolyte can largely alleviate Na+ depletion near the electrode surface in symmetric cells and, thus, contributes to stable and dendrite-free Na plating/stripping for 500 h. Furthermore, all-solid-state Na batteries with a 3,4,9,10-perylenetetracarboxylic dianhydride cathode exhibit a high capacity retention of 84% after 200 cycles and superior rate performance (up to 10C). Our work develops an effective way to realize a high-performance all-solid-state electrolyte for sodium batteries.

A high-performance all-solid-state PEO/NaTFSI/Na3SbS4 electrolyte for sodium batteries is realized owing to the electrostatic interaction between TFSI in the salt and Na3SbS4, which immobilizes TFSI anions and promotes the dissociation of NaTFSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号