首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, new monomers having siloxane groups were synthesized as an intermediate for preparation of siloxane modified polyimide polymers. Then with these monomers, the synthesis of uncrosslinked and crosslinked polyimide–siloxane hybrid polymer membranes were achieved. The purposes of the preparation of modified polyimides were to modify the thermal and chemical stability, and mechanical strength of polyimides, and to improve the gas separation properties of polymers. The new diamine monomer having siloxane groups was prepared from 3,5‐diaminobenzoic acid (3,5‐DABA) and 3‐aminopropyltrimethoxysilane (3‐APTMS) in N‐methyl‐2‐pyrollidone (NMP) at 180°C. The modified polyimide membranes having different amount of siloxane groups were synthesized from pyromellitic dianhydride (PMDA), 4,4‐oxydianiline (ODA), and 3,5‐diaminobenzamido‐N‐propyltrimethoxy silane (DABA/PTMS) in NMP using a two‐step thermal imidization process. The synthesis of modified polyimide membranes were characterized by Fourier transform infrared spectroscopy (FTIR). The thermal analysis of the polyimides were carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Water absorption and swelling experiments were also carried out for the investigation of structural properties of polymers. FTIR observations confirmed that the polyimide membranes with new diamine intermediate were successfully obtained. Thermal analysis showed that the uncrosslinked copolyimides exhibited two glass transition temperatures, indicating that they were separated microphases and it was found that all the modified copolyimides had showed higher glass transition temperature (Tg) than unmodified polyimides. The separation properties of the prepared polyimide membranes were also characterized by permeability for O2 and N2 gases and ideal selectivity values were calculated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and generally applicable new synthetic method to prepare second‐order nonlinear optical (NLO) polyimides has been developed. In this approach, side‐chain‐substituted polyimides were synthesized via isocyanato‐terminated prepolymers prepared directly from NLO chromophore‐containing diols Disperse Red 19. Using this technique, the tedious synthesis of the classical diamine monomers and harsh imidization process associated with polyamic acid prepolymers are avoided. The resulting polymers possessed good solubility and high glass‐transition (171–211 °C) and thermal‐decomposition temperatures. The polymers also exhibited excellent film‐forming properties, and good optical‐quality films were easily obtained by spin coating. The second‐order NLO activities of the polymer films were also studied, and several factors that might determine the growth of the second‐order NLO activity were proposed. The polymers obtained exhibit a large second‐order NLO activity (34–52.5 pm/V at 1064 nm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2189–2195, 2001  相似文献   

3.
An increased focus exists on the development of materials that might serve as ligament or tendon tissue engineering scaffolds. Requirements for a suitable candidate polymer include biodegradability, biocompatibility, and elasticity. In an attempt to meet these requirements novel citronellol‐containing polyphosphazenes were synthesized, characterized, and crosslinked to generate elastomers. Citronellol was chosen as a side group due to its anti‐inflammatory properties in addition to the presence of a double bond in its structure to permit polymer crosslinking. Alanine ethyl ester was chosen as a co‐substituent to tune hydrolysis rates without severely affecting the glass transition temperatures of the final polymers. Hydrolysis of the uncrosslinked polymers in the form of films in deionized water at 37 °C showed between ~8 and 16% mass loss and between a ~28 and 88% molecular weight decline over 12 weeks. Polymers were also crosslinked using ultraviolet radiation for increasing amounts of time. Preliminary mechanical testing of the homo‐citronellol polymer indicated increasing modulus and decreasing tensile strength with increased crosslink density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2258–2265  相似文献   

4.
Covalently crosslinked polyurethane/urea polymers were synthesized using diamine monomers modified with pendant glucose groups and 2,4‐toluene diisocyanate, poly(ethylene glycol) (PEG), and 1,1,1‐tris(hydroxymethyl)ethane (triol) comonomers. The polymers showed shape memory behavior with a switching temperature dependent on the glass transition temperature. The glass transition temperature is tuned by varying the mole ratio between the glucose‐diamine and PEG used in the polymerization. Increasing PEG content resulted in decreasing glass transition temperature, and a glass transition temperature of 39 °C, close to physiological temperatures, was obtained. The fixed shape showed gradual shape recovery behavior, but a fixity of 70% was achieved when the material was stored at 25 °C. The polymer recovered to the permanent shape when heated to 50 °C. Finally, the surface of a film of the polymer can be sulfated to achieve increased blood‐compatibility without sacrificing the shape memory properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2252–2257  相似文献   

5.
We carried out the polyaddition of dye‐embedded diols with diisocyanates to obtain novel nonlinear optical (NLO) polyurethanes, where the NLO units were embedded in the polymer backbone. The obtained polymers showed high glass‐transition temperatures (138–184 °C) and thermal stability (temperature of 10% weight loss under nitrogen = 227–287 °C). The λ maximum of the polymers was 521–556 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2620–2624, 2001  相似文献   

6.
New hydrogenated ring‐opening metathesis polymers with excellent thermal and optical properties were developed. These polymers were prepared by the ring‐opening metathesis polymerization of ester‐substituted tetracyclododecene monomers followed by the hydrogenation of the main‐chain double bond. The degree of hydrogenation was an important factor for the thermal stability of the polymers, and as complete hydrogenation as possible was necessary to obtain a thermally stable polymer. The completely hydrogenated ring‐opening polymer derived from 8‐methyl‐8‐methoxycarbonyl‐substituted monomer has a glass‐transition temperature of 171 °C and a 5% weight‐loss temperature of 446 °C. This polymer has excellent thermal and optical properties because of its bulky and unsymmetrical polycyclic structure in the main chain and is an alternative to glass or other transparent polymers such as poly(methyl methacrylate) and polycarbonate resin. This polymer has also been used in a wide variety of applications, such as optical lenses, optical disks, optical films, and optical fiber. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4661–4668, 2000  相似文献   

7.
There has been a tremendous recent interest in the development of second-order nonlinear optical (NLO) polymeric materials for photonic applications. However, a major drawback of second-order NLO polymers that prevents them from being used in device applications is the instability of their electric field induced dipolar alignment. The randomization of the dipole orientation leads to the decay of second-order optical nonlinearities. Numerous efforts have been made to increase the stability of the second-order NLO properties of polymers. The search for new approaches to develop NLO polymers with optimal properties has been an active research area since the past decade. A novel approach, combining the hybrid properties of high glass transition temperatures, extensively extensively crosslinked networks and permanent entanglements, based on interpenetrating polymer networks (IPN) is introduced to develop stable second-order NLO materials. Two types of IPN systems are prepared and their properties are investigated. The designing criteria and the rationale for the selection of polymers are discussed. The IPN samples show excellent temporal stability at elevated temperatures. Long-term stability of the optical nonlinearity at 100°C has been observed in these materials. Temporal stability of the NLO properties of these IPNs is synergistically enhanced. Relaxation behavior of the optical nonlinearity of an IPN system has been studied and compared with that of a typical guest/host system. The improved temporal stability of the second-order NLO properties of this IPN system is a result of the combination of the high rigidity of the polymer backbones, crosslinked matrices and permanent entanglements of the polymer networks. A slight modification of the chemical structure resulted in an improvement of the optical quality of the sample.  相似文献   

8.
Two aminophthalide monomers, 6-amino-3-benzylidenephthalide (I) and 3-(p-aminobenzylidene)phthalide (II), underwent self-polycondensation in o-phenylphenol at 250°C to yield polyphthalimidines with inherent viscosities up to 0.5 dL/g. These polymers were readily soluble in a variety of solvents such as dimethylformamide, dimethyl sulfoxide, m-cresol, pyridine, and methylene chloride. The temperatures at which a 10% weight loss occurred by thermogravimetry in nitrogen were 460°C for the polymer derived from I and 490°C for the polymer from II. The glass transition temperature of the polymer from I was 332°C, determined by thermomechanical analysis.  相似文献   

9.
Abstract

The synthesis and characterization of an epoxy-based nonlinear optical (NLO) polymer exhibiting optical transparency down to 340 nm is reported. The synthesized polymers show spectroscopic properties (NMR, IR, UV) in accordance with the proposed structures. A glass transition temperature (Tg) of 92°C and a thermal degradation temperature (Td) of 322°C were recorded. The poled polymer film exhibits stable second-order nonlinear optical activity (d33 = 4.2 pm/V) over a period of 800 hours as characterized by the temporal response of the second harmonic signal at room temperature.  相似文献   

10.
Dynamic loss modulus curves have been determined over a temperature range beginning at liquid nitrogen temperature for poly-α-olefin polymers containing various ring structures, i.e., phenyl, cyclohexyl, cyclopentyl, and naphthyl, in the side chain. Glass transition and appropriate secondary relaxation temperatures were observed for each polymer. Separation of each pendant ring structure from the main backbone chain by successive additions of methylene units results in lower glass-transition temperatures. Comparison of polymers with similar side chains and different ring structures shows that the respective glass-transition temperatures decrease in the order naphthyl > cyclohexyl > phenyl > cyclopentyl. Secondary relaxation peaks were obtained at about ?150°C for polymers containing the cyclohexyl and cyclopentyl rings. A similar peak was observed for the polymer possessing a phenyl ring separated from the main chain backbone by two methylene units. The comparable polymer containing the naphthyl ring structure exhibited a broad secondary relaxation peak centered at ?20°C. The polymers possessing cyclohexyl rings separated from the main chain backbone by one or two methylene units had an additional low temperature peak at ?80°C. The molecular mechanism associated with this relaxation may be related to intramolecular transformations of the cyclohexyl ring between its “chair–chair” conformations.  相似文献   

11.
Isopiestic measurements of solvent uptake have been made in the synthetic isoprene/benzene system for both crosslinked and uncrosslinked polymers in order to revisit the question of the swelling activity parameter S. Both the nonzero value of S at zero swelling and the appearance of a peak in S vs. degree of swelling have been observed in some solvent/rubber pairs and we here investigate both the crosslink and temperature dependencies of these phenomena. The data analysis is an extension of prior work from this laboratory using continuum thermodynamics concepts and avoiding molecular models in an attempt to establish the fundamental phenomenology of the process and the validity or lack of validity of the hypothesis that the mixing and elastic contributions to the free energy of networks are separable. We present results from measurements in benzene vapors at temperatures between 10 and 55°C for an uncrosslinked rubber and rubbers crosslinked with 1, 5, 10, and 15 parts per hundred dicumyl peroxide. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 817–826, 1997  相似文献   

12.
Recent advances in poled amorphous polymers for second-order nonlinear optics are discussed with emphasis on stabilizing the frozen-in nonlinearity via chemical crosslinking under electric fields. Specific examples of a linear polymer and a crosslinked polymer, both with nitroaniline-type chromophores covalently attached as side groups, are presented and compared in their glass transition behavior, linear optical properties, poling dynamics, and stability of frozen-in nonlinearity. It is demonstrated that by employing chemical crosslinking under electric fields one can prepare highly efficient and stable poled polymers that exhibit no decay in nonlinearity at ambient conditions and no apparent tendency of decay even at 85°C as well as excellent optical properties. The historical development of organic materials for second-order nonlinear optics and recent advances in device fabrication based on poled polymers are also discussed briefly.  相似文献   

13.
A crosslinking strategy was used to improve the thermal and mechanical performance of poly(propylene carbonate) (PPC): PPC bearing a small moiety of pendant C?C groups was synthesized by the terpolymerization of allyl glycidyl ether (AGE), propylene oxide (PO), and carbon dioxide (CO2). Almost no yield loss was found in comparison with that of the PO and CO2 copolymer when the concentration of AGE units in the terpolymer was less than 5 mol %. Once subjected to UV‐radiation crosslinking, the crosslinked PPC film showed an elastic modulus 1 order of magnitude higher than that of the uncrosslinked one. Moreover, crosslinked PPC showed hot‐set elongation at 65 °C of 17.2% and permanent deformation approaching 0, whereas they were 35.3 and 17.2% for uncrosslinked PPC, respectively. Therefore, the PPC application window was enlarged to a higher temperature zone by the crosslinking strategy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5329–5336, 2006  相似文献   

14.
Abstract

An epoxy-based nonlinear optical (NLO) polymeric material incorporating 4-(4′-nitrophenylazo) phenylamine has been synthesized and subsequently functionalized with acryloyl groups. A glass transition temperature (T 8)of 108°C and a degradation temperature (air) of 251°C were recorded. After crosslinking at 160°C for 2 hours, the T 8 of the polymer increased to 146°C. In order to increase the nonlinear optical chromophore concentration and the crosslinking density, the crosslink-able NLO dye, 2,4-acryloyloxy (4′-phenylazo nitrobenzene), was processed and poled in this epoxy-based NLO material matrix in a manner similar to a typical guest-host system, and thermally crosslinked under the above condition in the poled phase. The crosslinked guest-host material was found to be amorphous with a T 8 of approximately 132°C. It also exhibits a second-order nonlinear optical coefficient d 33 of 14.14 pm/V at a maximum doping level of 33% by weight of the NLO dye, and retains 93% of its original d 33 value after being subjected to thermal treatment at 100°C for 168 hours. The behavior of the crosslinked polymer and the crosslinked guest-host polymer is discussed.  相似文献   

15.
A new main-chain syndioregic (head-to-head) NLO polymer was synthesized. The glass transition temperature of high molecular weight polymer was found to be 208°C, and the polymer has minimal weight loss at temperatures to at least 250°C owing to the incorporation of hydrogen bonding moieties and rigid bridging groups. The polymer was further characterized using nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The study of the nonlinear optical properties of this polymer are in progress. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Several new phosphorylated or nonphosphorylated maleimide or nadimide systems containing s-triazine rings were synthesized. Their synthesis was accomplished by simple methods utilizing readily available and relatively inexpensive starting materials. All polymer precursors were characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. They were thermally polymerized to heat-resistant laminating resins. Thermal characterization of monomers and their cured resins was achieved using differential thermal analysis (DTA), dynamic thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). The cured resins were stable up to 304–330°C both in nitrogen and air atmospheres and formed anaerobic char yield 49–59% at 800°C. The phosphorylated polymers showed a lower temperature of initial weight loss but afforded higher anaerobic char yield than did the corresponding nonphosphorylated polymers. The thermal properties of the polymers were correlated with their chemical structure.  相似文献   

17.
The new acrylate monomers 4-(ω-acryloyloxyalkyloxy)-N-(9-methyl-2-carbazolylmethylene) anilines containing from 2 to 11 methylenic units in their alkyl group and a carbazolyl group in the mesogenic unit were synthesized and polymerized by azobisisobutyronitrile (AIBN) as radical initiator and by low-energy electron beam (EB) initiation. The thermal properties of the resulting polymers were examined using differential scanning calorimetry and thermal optical polarizing microscopy. The polymer prepared by AIBN with a hexamethylene spacer exhibited a nematic phase from 73 to 170°C and with an undecamethylene spacer exhibited a smectic phase from 55 to 202°C. The isotropization temperature of the polyacrylates increased with increasing the number of carbons of the methylenic spacer. The yield of the resulting polymer was changed by EB irradiation temperature from 4.5 to 41%. The highest yield was obtained when the monomer was polymerized in a liquid-crystalline phase. The same tendency was observed in the molecular weight of the resulting polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
A series of novel liquid crystalline monomers and polymers incorporating phenylbenzoate or phenylcinnamate segments as mesogenic cores have been synthesized to investigate the sensitivity of the photochromic cinnamoyl derivatives and to overcome the defects of the thermal instability of azobenzene. Their liquid crystalline, thermal, and photoinduced properties of all monomers and polymers were characterized. The polymers showed excellent solubility in common organic solvents such as CHCl3, toluene, and DMF and exhibited good thermal stability with decomposition temperatures (Td) at 5% weight loss greater than 340 °C and about 50% weight loss occurred beyond 430 °C under nitrogen atmosphere. The pitch length (about 574 nm) of the synthesized cholesteric polymeric film ( CP2 ) was estimated using scanning electron microscopy. These photochromic polymers exhibited strong UV–vis absorption maxima at about 264 or 320 nm. Moreover, photo induced configurational E/Z isomerization further changed the π‐electron conjugation systems leading to a decrease at the π‐π* transition and an increase in the range of 300 nm to 400 nm for photochromic copolymers. The thermal stability of the Z‐structural segment was confirmed by heating the polymer at 50 °C for over 5 h. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1289–1304, 2008  相似文献   

19.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Motivated by the growing demand for greener and sustainable polymer systems, self‐healing elastomers were prepared by emulsion polymerization of terpene and furfural‐based monomers. Both the method and the monomers were green and sustainable. The synthesized copolymers showed molecular weights between 59,080 and 84,210 Da and glass‐transition temperature (Tg) between ?25 and ?40 °C, implying rubbery properties. A set of one‐dimensional (1D) and two‐dimensional (2D) NMR spectroscopy supported the formation of the copolymer and nuclear spin–spin coupling in the copolymer. Reactivity ratios were determined by conventional linear method. A thermoreversible network was achieved for the first time by reacting the furan‐based polymer with bismaleimide (BM) as a crosslinker, via a Diels?Alder (DA) coupling reaction. The reversible nature of the polymer network was evidenced from infrared and NMR spectroscopy. The thermoreversible character of the DA crosslinked adduct was confirmed by applying retro‐DA reaction (observed in differential scanning calorimeter [DSC] analysis) and mechanical recovery was verified by repeated heating and cooling cycles. The network polymers displayed excellent self‐healing ability, triggered by heating at 130 °C for 4–12 h, when their scratched surface was screened by microscopic visualization. The healing efficiency of the crosslinked DA‐adduct was calculated as 78%, using atomic force microscopy. This work provides a green and efficient approach to prepare new green and functional materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 738–751  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号