首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In the present paper we combine the Winnow algorithm and an advanced scheme for feature generation into a tool for multiclass classification. The Winnow algorithm, specifically designed in the late 1980s to work well with high-dimensional data, by design ignores most of the irrelevant features for the scoring of each single training/test case. To augment the pool of available molecular features we use the Winnow algorithm in conjunction with a process that creates additional features from a set of given ones. We adapt a technique formerly employed in text classification termed "orthogonal sparse bigrams" and extend the use of that method to the domain of cheminformatics. Using circular molecular fingerprints as initial features, we create "molecular orthogonal sparse bigrams" (MOSBs) and report their successful application to the task of classification of bioactive molecules. Additionally, we introduce a memory-efficient way of bagging individual classifiers, avoiding the need to hold the complete training data set in memory. To compare the performance of our method with published results, we use the Hert data set of 8293 active molecules in 11 classes. We compare our method to Random Forest and find that our method not only is comparable or better in classification accuracy (up to 50% higher in MCC [Matthews correlation coefficient], 98% higher in fraction of correct predictions) but also is quicker to train (by a factor between 2 and 18, depending on the feature generation), more memory efficient, and able to cope more easily with large data sets when we seeded the actives into a pool of 94290 inactive molecules. It is shown that this method can be used with different fingerprints.  相似文献   

3.
4.
5.
6.
A hierarchical scheme has been developed for detection of bovine spongiform encephalopathy (BSE) in serum on the basis of its infrared spectral signature. In the first stage, binary subsets between samples originating from diseased and non-diseased cattle are defined along known covariates within the data set. Random forests are then used to select spectral channels on each subset, on the basis of a multivariate measure of variable importance, the Gini importance. The selected features are then used to establish binary discriminations within each subset by means of ridge regression. In the second stage of the hierarchical procedure the predictions from all linear classifiers are used as input to another random forest that provides the final classification. When applied to an independent, blinded validation set of 160 further spectra (84 BSE-positives, 76 BSE-negatives), the hierarchical classifier achieves a sensitivity of 92% and a specificity of 95%. Compared with results from an earlier study based on the same data, the hierarchical scheme performs better than linear discriminant analysis with features selected by genetic optimization and robust linear discriminant analysis, and performs as well as a neural network and a support vector machine.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Modelling, predicting, and understanding the factors influencing the viscosities of ionic liquids and related mixtures are sequentially checked in this work. The molecular maps of atom-level properties (MOLMAP codification system) is adapted for a straightforward inclusion of ionic liquids and mixtures containing ionic liquids. Random Forest models have been tested in this context and an optimal model was selected. The interpretability of the selected Random Forest model is highlighted with selected structural features that might contribute to identify low viscosities. The constructed model is able to recognize the influence of different structural variables, temperature, and pressure for a correct classification of the different systems. The codification and interpretation systems are highlighted in this work.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号