首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3D atom probe(3DAP) is an imaging instrument based on the controlled field evaporation of single atoms from a sample having a tip shape with an end radius of 50 nm. In the fs laser assisted 3DAP the evaporation is induced by the laser pulses so that the physical process involved in this 3DAP analysis might correspond to the very early stages of the ablation process. In this paper we present the principle of the 3DAP and we discuss the existing models of the fs assisted evaporation. At last, we test the relevance of these models with pump-probe experiments on tungsten tips in the tomographic atom probe.  相似文献   

2.
Novel experimental data on microstructuring of thin (60 nm) gold films by femtosecond laser pulses are presented and discussed. Material modifications are induced by different laser field distributions on the sample surface. Images of specially fabricated masks are transferred onto the gold surface with a 50× and 100× demagnifications. It is shown that, in the irradiated region of the gold film, the heated material tends to concentrate in the center. For example, a square-like field distribution on the target surface produces a cross with a jet in the middle. It is shown that this technique allows producing of a variety of microstructures with controllable nanorelief. Possible mechanisms leading to the observed material modifications as well as the resolution limits of this technique are discussed.  相似文献   

3.
We have performed a comparative study of UV laser ablation of SrTiO3 with nanosecond- and sub-picosecond sources, respectively. The experiments were performed with lasers at a wavelength of 248 nm and pulse durations of 34 ns and 500 fs. Femtosecond ablation turns out to be more efficient by one order of magnitude and eliminated the known problem of cracking of SrTiO3 during laser machining with longer pulses. In addition, the cavities ablated with femtosecond pulses display a smoother surface with no indication of melting and well-defined, sharp edges. These effects can be explained by the reduced thermal shock effect on the material by using ultrashort pulses.  相似文献   

4.
Self-compression of multi-millijoule femtosecond laser pulses and dramatic increase of the peak intensity are found in pressurized helium and neon within a range of intensity in which the ionization modification of the material parameters by the pulse is negligible. The pulse propagation is studied by the (3 + 1)-dimensional nonlinear Schrödinger equation including basic lowest order optical processes - diffraction, second order of dispersion, and third order of nonlinearity. Smooth and well controllable pulse propagation dynamics is found. Construction of compressed pulses of controllable parameters at given space target point by a proper chose of the pulse energy and/or gas pressure is predicted.  相似文献   

5.
The third harmonic of 810-nm 100-fs pulses at 130 μJ is generated very efficiently when ultrashort pulses from two noncollinear beams interfere in an optical medium to create an instantaneous transient grating via the optical Kerr effect. The grating couples two pathways for third-harmonic generation, each taking two photons from one beam and one photon from the other beam, respectively. The coupling enables self-phase matching in the complete process, resulting in a conversion efficiency of ≈3%. Scattering an independent beam at the transient grating confirms a lifetime limited by the pulse duration, with a reaction on the order of one optical cycle. Using the second harmonic of a Ti-sapphire laser at 405 nm, it is shown that the generation of the transient Kerr grating is a general feature, requiring less than 20 μJ/pulse. By introducing a third femtosecond beam we are able to emulate various digital logic units with femtosecond response. Received: 16 October 2001 / Published online: 6 June 2002  相似文献   

6.
Theoretical analysis of the influence of the temporal profile (rectangular, triangular, Gaussian) of the laser pulse on heating/cooling and phase transition velocities and quantity of ablated material was performed on the basis of a multifront Stephan problem. Modeling showed that material removal under stationary conditions (that correspond to long pulses) is entirely controlled by specific heat and material density, while in the case of transient regimes (short pulses) thermal conductivity and heat capacity play a predominant role. Interaction of the melting and evaporation fronts characterized by an evaporation front velocity far exceeding the melting front one is one of the examples of the transient nature of the phenomena influenced by the laser pulse parameters.  相似文献   

7.
We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.  相似文献   

8.
We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 μJ. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications.  相似文献   

9.
We report here on a experimental observation of photon-stimulated field emission of molecular anthracene ions from the surface of a layer adsorbed on a tungsten field-emitter tip. When the tip is irradiated with laser pulses 249, 308, and 400 nm in wavelength falling within the absorption bands of anthracene, the stimulated ion signal is proportional to the pulse fluence. The efficiency of the process decreases with the increasing laser wavelength. Photon stimulation is believed to be due to the resonance excitation of the anthracene molecules, followed by the field ionization of the excited molecules.  相似文献   

10.
Femtosecond pulses of a collinearly pumped Optical Parametric Oscillator (OPO) are applied for investigations of the carrier dynamics in ternary and quaternary semiconductor quantum wells. The design and the specifications of the OPO are given in detail. We show that no measurable jitter exists between the pump pulses and the output pulses of the OPO. Therefore, it is possible to use the OPO and its pump laser for two-color experiments with a time resolution limited by the pulse lengths. We present and discuss results of transient four-wave mixing experiments on (InGa) As/InP quantum wells, and find a new kind of polarization-dependent quantum beat phenomenon. In addition, non-degenerate experiments on quantum wells from the quaternary (InGaAl) As material system, using two pulses at different wavelengths (one from the OPO and one from the pump laser), are discussed as a novel experimental technique to study carrier trapping into quantum wells.  相似文献   

11.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

12.
We report the generation of high-peak power multi-wavelength picosecond laser pulses using optical parametric amplification (OPA) in BBO seeded with pulses generated in a 5-mm length BaWO4 crystal by stimulated Raman scattering of 18-ps laser pulses at 532 nm. The maximum output energy of the amplified first-Stokes component at 559.7 nm was about 1.76 mJ. The corresponding maximum peak power, pulse duration and spectral line width were measured to be 117.3 MW, 15 ps and 18.0 cm−1, respectively. The multi-wavelength picosecond laser pulses were in the visible and near infrared ranges. Using this Raman-seeded OPA technique, the beam quality of the stimulated Raman scattering pulses can be improved.  相似文献   

13.
Micro-ablation of crystalline silicon was performed by irradiating a silicon substrate with femtosecond laser pulses of wavelengths 786 nm or 393 nm focused using a conical axicon assisted with a convex lens. Focusing the laser beam close to the tip of the axicon by means of the lens significantly improved the efficiency of concentration of laser pulse energy at the central spot of the resulting Bessel-Gaussian intensity distribution. As a result, micron-sized holes were formed with the diameter determined by the ablation threshold in the calculated fluence profile. It is possible to predict hole size from the laser pulse energy and the wavelength. Crystalline particles, a few tens of nanometers in size, were formed near the ablated zone.  相似文献   

14.
We introduce a novel method to generate the optical vortex with computer-generated hologram (CGH) fabricated inside glass by femtosecond laser pulses. The CGH was directly written inside glass by femtosecond laser pulses induced microexplosion without any pre- or post-treatment of the material. We also realized the restructured optical vortex beams of both the transmission and reflection pattern with high fidelity using a collimated He-Ne laser beam. The total diffractive efficiency of both the transmission and reflection pattern is about 4.79%.  相似文献   

15.
Sub-10-fs-pulses are generated by self-compression in a noble gas filament. Using input pulses from a Ti:sapphire amplifier system with an energy of about 1.5 mJ at a repetition rate of 3 kHz and a pulse duration of 30 fs self-compressed sub-10-fs pulses with energies of about 0.3 mJ have been generated. These pulses are characterized with spectral phase interferometry for direct electrical-field reconstruction (SPIDER). Depending on the laser parameters, we observe a significant change in the chirp of the white-light. The spectral distribution of the outcoming beam profile is measured to distinguish the white-light core from the surrounding halo.  相似文献   

16.
A simple analytical model for inverse pulsed laser deposition is proposed. In the model the motion of the evaporated material is assumed to emerge as from a point source located above the surface of evaporation at some distance. The obtained thickness profiles of inverse deposited films agree well with those calculated by the test particle Monte Carlo method. The proposed approach has been applied for analysis of experimental data on inverse pulsed laser deposition of graphite in nitrogen atmosphere with nanosecond pulses of laser fluences between 1 and 7 J/cm2. The model describes well the thickness profiles and pressure dependence of film growth rate for inverse deposition.  相似文献   

17.
A microscopic theory is presented for multiple harmonic generation (MHG) from a metal surface in the jellium approximation and for laser intensities below the critical value for plasma formation. Calculations are presented for the second and up to the sixth harmonic, in the case of a gold surface and for laser wavelengths 800 and 1064 nm, with femtosecond and picosecond laser pulses. The peaks of the harmonic pulses are delayed relative to the peak of the incident laser pulse by about 20 to 30 fs due to the finite electron-relaxation times. The calculated relative peak intensities of the various harmonics are most sensitive to the values of the relaxation times, and MHG provides a way of determining these times. An erratum to this article can be found at .  相似文献   

18.
The characteristics and mechanisms of the damage to absorbing glass with high-repetition laser pulses (several kHz) are discussed. The results show that: (1) in the range of comparatively low-repetition rate, the damage is characterized by material melting and a small crater on the surface of substrate; (2) with the increase in repetition rate, a bigger and deeper crater is surrounded by re-deposition and crystalline granules originating from the cooling of vapor; and (3) the crater, surrounded by evaporation and an large number of solid particulates which is obviously the characters of phase explosion, becomes even bigger and deeper when the repetition rate is further increased. We modeled the temperature distribution in different repetition rate regime and found that heat accumulation plays a significant role in damage process. Because of the temperature dependence of damage mechanism, the temperature of the area irradiated by laser beam will ramp up with increasing the repetition rate, which triggers the melting and evaporation of dielectrics and phase explosion successively. Our results may benefit the understanding of laser-induced damage in optical materials.  相似文献   

19.
The mechanisms of nonlinear absorption in transparent materials under irradiation with ultrashort laser pulses are considered theoretically. Nitride semiconductor, sapphire and others transparent dielectrics were investigated. The ablation threshold for these materials is within multi-TW/cm2 range. The model was used based on the tunneling absorption under the irradiation by high-intensity ultrashort pulses in terms of the theory of ionization of solid in a field of strong electromagnetic wave. The effect of the energy gap of material on the threshold of laser ablation was adequately explained.  相似文献   

20.
A simple experimental technique is presented capable of separating the contribution of purely optical Kerr effects from that of thermo-optical effects in the nonlinear response of materials under high-repetition-rate laser irradiation. The technique has been realized by combining the single-beam Z-scan method with the single-beam thermal lens measurement method. We demonstrate this technique by analysing the nonlinear response at 770 nm of CS2 which exhibits cumulative thermal effects when irradiated by very intense femtosecond laser pulses at a 76-MHz repetition rate. Received: 3 November 1998 / Revised version: 4 January 1999 / Published online: 2 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号