首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Schiff base compound (Z)-1-((4-phenylamino)phenylamino)methylene)naphthalen-2(1H)-one has been synthesized and characterized by IR, UV–Vis, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree–Fock (HF) and density functional method (B3LYP) with 6−31G(d,p) basis set. Calculated results show that density functional theory DFT and HF can well reproduce the structure of the title compound. Using the time-dependent density functional theory (TD-DFT) and Hartree–Fock (TD-HF) methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and experimental ones is determined. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6−31G(d,p) basis set by applying the polarizable continuum model (PCM). The total energy of the title compound decreases with increasing polarity of the solvent. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital analysis (NBO), and non-linear optical (NLO) properties were performed at B3LYP/6−31G(d,p) level of theory.  相似文献   

2.
The title compound of 3-p-methylphenyl-4-amino-1, 2, 4-triazole-5-thione was synthesized and characterized by elemental analysis, IR, electronic spectra, and X-ray single crystal diffraction. Quantum chemical calculations of the structure, natural bond orbital, and thermodynamic functions of the title compound were performed by using B3LYP/6-311G** and HF-6-311G** methods. Both the methods can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, and B3LYP/6-311G** method is superior to HF/6-311G** method to predict the vibrational frequencies. Electronic absorption spectra calculated by B3LYP/6-311G** method have some red shifts compared with the experimental ones and natural bond orbitals analyses indicate that the two absorption bands are mainly derived from the contribution of n → π* and π → π* transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C 0 p,m , S 0 m , H 0 m , and temperatures.  相似文献   

3.
3-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-ethylphenyl)-1-oxopropan-2-yl-4-ethyl-benzoate (BEOE) has been synthesized and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy. Its crystal structure has also been determined by X-ray single crystal diffraction. For the title compound, density functional theory (DFT) calculations of the structure and vibrational frequencies have been performed at B3LYP/6-31G* level of theory. Based on the vibration analysis, thermodynamic properties of the title compound have been calculated. The correlative equations between the thermodynamic properties and temperatures have also been listed. By using TD-DFT method, electron spectra of the title compound have been predicted, which suggests the B3LYP/6-31G* method can approximately simulate the electron spectra for the system presented here.  相似文献   

4.
The molecular structure, conformafional stability, and vibrational frequencies of ten-butyl N-(2- bromocyclohex-2-enyl)-N-(2-furylmethyl)carbamate (TBBFC) were investigated by utilizing the Hartree-Fock (HF) and density functional theory (DFT) ab initio calculations with 6-31G ^* and 6-31G^* * basis sets. The optimized bond length and angle values obtained by HF method showed the best agreement with the experimental values. Comparison of the observed and calculated fundamental vibrational frequencies indicated that B3LYP was superior to the scaled HF approach for molecular problems. Optimal uniform scaling factors calculated for the title compound are 0.899/0.904, 0.958/0.961, and 0.988/0.989 for HF, B3LYP, and BLYP (6-31G ^*/6-31G ^* *), respectively.  相似文献   

5.
The Schiff base compound (E)-2-[(2-chlorophenyl)iminomethyl]-4-trifluoromethoxyphenol has been synthesized and characterized by IR, UV-vis, and X-ray single-crystal determination. The molecular geometry from X-ray experiment in the ground state has been compared using the density functional theory (DFT) with the 6-311++G(d,p) basis set. The calculated results show that the DFT can well reproduce the structure of the title compound. Using the TD-DFT method, electronic absorption spectra of the title compound have been predicted, and a good agreement is determined with the experimental ones. To investigate the tautomeric stability, optimization calculations at the B3LYP/6-311++G(d,p) level were performed for the enol and keto forms of the title compound. Calculated results reveal that its enol form is more stable than its keto form. The predicted nonlinear optical properties of the title compound are much greater than those of urea. The changes of thermodynamic properties for the formation of the title compound with the temperature ranging from 200 to 500 K have been obtained using the statistical thermodynamic method. At 298.15 K, the change of Gibbs free energy for the formation reaction of the title compound is -824.841 kJ/mol. The title compound can spontaneously be produced from the isolated monomers at room temperature. The tautomeric equilibrium constant is also computed as 3.85 × 10(-4) at 298.15 K for enol?keto tautomerization of the title compound. In addition, a molecular electrostatic potential map of the title compound was performed using the B3LYP/6-311++G(d,p) method.  相似文献   

6.
The molecular structure and vibrational spectra of 3-acetyl-4-[N-(2'-aminopyridinyl)-3-amino]-3-buten-2-one (C(11)H(13)N(3)O(2)) in the ground state have been investigated by Hartree-Fock and density functional method (B3LYP and BLYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that B3LYP is superior to the scaled HF approach for molecular problems.  相似文献   

7.
The optimized molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) (1)H and (13)C NMR shift values of 5-(4-bromophenylamino)-2-methylsulfanylmethyl-2H-1,2,3-triazol-4-carboxylic acid ethyl ester have been calculated by using Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6-31G(d), 6-31G(d,p) and LANL2DZ basis sets. The optimized molecular geometric parameters were presented and compared with the data obtained from X-ray diffraction. In order to fit the calculated harmonic wavenumbers to the experimentally observed ones, scaled quantum mechanics force field (SQM FF) methodology was proceeded. Correlation factors between the experimental and calculated (1)H chemical shift values of the title compound in vacuum and in CHCl(3) solution by using the conductor-like screening continuum solvation model (COSMO) were reported. The calculated results showed that the optimized geometry well reproduces the crystal structure. The theoretical vibrational frequencies and chemical shifts are in very good agreement with the experimental data. In solvent media the energetic behavior of the title compound was also examined by using the B3LYP method with the 6-31G(d) basis set, applying the COSMO model. The obtained results indicated that the total energy of the title compound decreases with increasing polarity of the solvent. Furthermore, molecular electrostatic potential (MEP), natural bond orbital (NBO) and frontier molecular orbitals (FMOs) of the title compound were performed by the B3LYP/LANL2DZ method, and also thermodynamic parameters for the title compound were calculated at all the HF and B3LYP levels.  相似文献   

8.
The compound 4-N-bicyclo [2.2.1] hept-2'-en-2'-amino-N-azatricyclo [3.2.1.0(2,4)] octane (2) has been synthesized and characterized by elemental analysis, IR, UV-vis, mass and NMR. Density functional theory (DFT) and Hartree-Fock (HF) calculations have been carried out for the title compound by using the standard 6-31G* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they complement each other. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT and ZINDO methods. The (13)C NMR and (1)H NMR of compound (2) have been calculated by means of Becke 3-Lee-Yang-Parr (B3LYP) density functional method with 6-31G* basis set. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting NMR properties. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated.  相似文献   

9.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

10.
11.
The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[d]oxazol-3(2H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.  相似文献   

12.
The title compound, 1′,3′-dihydrospiro[fluorene-9,2′-perimidine] has been synthesized and characterized by NMR, ESI-MS, IR, elemental analysis, UV–vis and fluorescence spectroscopy. The crystal structures of the title compound and its co-crsytal with 9-fluorenone have also been determined by X-ray single crystal diffraction. Density functional theory (DFT) calculations and vibrational frequencies have been performed at B3LYP/6-31G* level. The comparisons between the experimental vibrational frequencies and the predicted data show that B3LYP/6-31G* method can simulate the IR of the title compound on the whole. The theoretical electronic absorption spectra have been calculated by using TD-DFT method and compared with the experimental result. The solid-fluorescence determination of the title compound reveals two emission bans at 430 and 590 nm while its co-crystal reveals only one emission band at 590 nm.  相似文献   

13.
The structural and conformational features of 4-(2-phenylethyl)-5-(2-furyl)-2, 4-dihydro-3H-1,2,4-triazole-3-thione (1a), which can be related to the biological activity, have been investigated by X-ray diffraction and molecular modeling techniques. Ab initio method (RHF/6-31G) and density functional theory (B3LYP/6-31G(D)) have been used to calculate structural parameters, conformations, and relative energy of two tautomeric specious (1a and 1b) of the title compound. The geometry and the conformation of the thione form, 1a, is well reproduced by the DFT (B3LYP/6-31G(D)) method as compared with X-ray structure in which this form is found. The thione form is also predicted to be 14.42 kcal/mol more stable than the thiol form in the gas-phase by the DFT method.  相似文献   

14.
The title compound, 1-acetyl-3-(2,4-dichloro-5-fluoro-phenyl)-5-phenyl-pyrazoline, has been synthesized and characterized by elemental analysis, IR, UV-vis and X-ray single crystal diffraction. Density functional (DFT) calculations have been carried out for the title compound by using B3LYP method at 6-31G* basis set. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they are supported each other. The theoretical electronic absorption spectra have been calculated by using TD-DFT method. Molecular orbital coefficients analyses suggest that the above electronic transitions are mainly assigned to n-->pi* and pi-->pi* electronic transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C(p,m)(0),S(m)(0),H(m)(0) and temperatures.  相似文献   

15.
A new Schiff base (E)-4-((4-bromobenzylidene) amino) benzenesulfonamide (M2) was synthesized by the reaction between 4-bromobenzaldehyde and sulfanilamide followed by characterization using IR, Raman, UV–Visible, 1HNMR, and 13CNMR spectral techniques. This was followed by electronic structure studies using DFT and TD-DFT. We simulated the IR spectrum using B3LYP/6-31+G(d,p) level of theory, followed by a comparison with experimental spectra and detailed potential energy distribution and vibrational assignment analysis. The comparison of experimental UV and simulated UV spectrum using TD-DFT B3LYP/6-31+G(d,p) in DMSO solvent atmosphere gave good agreement. As Schiff bases are biologically active, we checked for the potential activity of the synthesized compound with the help of ADMET prediction and found it to be active. Wavefunctions related properties like ELF, LOL, and ELF are also reported. Prediction of biological activity spectrum study indicated possible antibacterial activity against bacteria, which is supported by molecular docking against Staphylococcus aureus (3U2D) protein with a docking score of ?7.1 kcal/mol. Experimental antibacterial study using the compound and standard drugs confirmed this prediction.  相似文献   

16.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

17.
The Imidazole compound, Ethyl N′-3-(1H-imidazol-1-yl) propylcarbamoyl benzohydrazonate monohydrate, has been synthesized and characterized by IR, NMR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state has been compared using the density functional method (B3LYP) with 6-31G+(d) basis set. To determine conformational flexibility, molecular energy profile of the title compound was obtained by DFT calculations with respect to two selected degrees of torsional freedom, which were varied from −180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), natural bond orbitals (NBO), frontier molecular orbitals (FMO), and thermodynamic properties were performed at B3LYP/6-31G+(d) level of theory.  相似文献   

18.
In this study, the molecular structure and spectroscopic properties of the title compound were characterized by X-ray diffraction, FT-IR and UV-vis spectroscopies. These properties were also investigated using DFT method. The most convenient conformation of title compound was firstly determined. The geometry optimizations in gas phase and solvent media were performed by DFT methods with B3LYP adding 6-31G(d) basis set. The differences between crystal and computational structures are due to crystal packing in which hydrogen bonds play an important role. UV-vis spectra were recorded in different organic solvents. The results show that title compound exists in both keto and enol forms in DMSO, EtOH but it tends to shift towards enol form in benzene. The polar solvents facilitate the proton transfer by decreasing the activation energy needed for Transition State. The formation of both keto and enol forms in DMSO and EtOH is due to decrease in the activation energy. TD-DFT calculations starting from optimized geometry were carried out in both gas and solution phases to calculate excitation energies of the title compound. The non-linear optical properties were computed at the theory level and the title compound showed a good second order non-linear optical property. In addition, thermodynamic properties were obtained in the range of 100-500K.  相似文献   

19.
The molecular geometry and vibrational frequencies of N-phenyl-N'-(2-thienylmethylene)hydrazine (C11H10N2S) have been calculated using Hartree-Fock and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and angles obtained using HF and DFT (B3LYP) are in agreement with the experimental data. B3LYP method seems to be appropriate than HF method for the calculation of vibrational frequencies and geometrical parameters of the (C11H10N2S) compound.  相似文献   

20.
The molecular geometry and vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) in the ground state has been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号