首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Optical emission spectroscopy experiments are carried out by recording the radiation from the γ transitions of nitrogen monoxide in an air inductively coupled plasma in interaction with a water-cooled metallic flat plate at moderate pressure. The calibrated results allow to derive the vibrational and rotational temperatures of the NO(A 2 Σ +) excited state as well as its densities in the free jet and within the boundary layer by comparison with calculated spectra. Those results are compared with previous ones concerning temperatures and densities of the ground states of the majority species (N2, O2 and NO) that were obtained by laser techniques. As for the NO(X 2 Π) ground state, vibration and rotation of the excited state are found out of equilibrium. The NO(A 2 Σ +) excited state is found to be populated by an energy transfer from the metastable N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}). The steady state of the plasma allows using this property to derive N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}) densities and N2 electronic excitation temperatures. Close to the wall, a production of excited NO by a catalytic process is also considered involving N2( A3\varSigma +uA^{3}\varSigma ^{+}_{u}) as source of adsorbed atoms. The present results confirm that the kinetic temperature cannot be compared to the rotational temperature derived from optical emission spectroscopy in such plasma conditions.  相似文献   

2.
The weighted total cross section (WTCS) theory has been applied to the electron-H2 collision to obtain excitation, ionisation and dissociation cross section and rate coefficients of the X 1Sg+^{1}\!\Sigma _{g}^{+}, c 3Pu^{3}\!\Pi _{u}, a 3Sg+^{3}\!\Sigma _{g}^{+}, e $^{3}\!\Sigma _{u}^{+}$^{3}\!\Sigma _{u}^{+} and B 1Su+^{1}\!\Sigma _{u}^{+} states. Calculation has been performed in the temperature range 1500 K–15000 K. Rate coefficients are calculated from WTCS assuming Maxwellian energy distribution functions for electrons and heavy particles. Thermal equilibrium results are presented and fitting parameters (a, b and c) are given for each reaction rate coefficient: k(θ) = a (θb) exp(-c/θ).  相似文献   

3.
We report a capillary dielectric barrier discharge (Cap-DBD) plasma operated in atmospheric pressure air. The plasma reactor consists of metal wire electrodes inside quartz capillary tubes powered with a low kilohertz frequency AC high voltage power supply. Various reactor geometries (planar, 3-D multilayer, and circular) with wall-to-wall separation ranging from zero up to 500 micron were investigated. For the electrical and spectral measurements, three reactors, each with six tubes, six inches in length, were assembled with gap widths of 500 micron, 225 micron, and 0 micron (i.e. tubes touching). The discharges appear homogenous across the whole device at separations below 225 micron and turned into filamentary discharges at larger gap spaces. The operating voltage was generally around 3–4 kV (rms). The power consumption by the Cap-DBD was calculated using voltage/charge Lissajous figures with observed powers of a few watts to a maximum of about 14 W for the reactor with no gap spacing. Further studies of optical emission spectroscopy (OES) were employed to evaluate the reactive species generated in the microplasma source. The observed emission spectrum was predominantly within the second positive system of N2\mbox{N}_2(C3\mbox{C}^3 Pu\Pi_u–B3\mbox{B}^3 Pg\Pi_g) and the first negative system of N+2\mbox{N}^+_2(B2\mbox{B}^2 S+u\Sigma^+_u–X2\mbox{X}^2 S+g\Sigma^+_g).  相似文献   

4.
The temperature dependences of the quenching rate constants of the states N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}}${\rm C} \ {^{3}{ \rm \Pi }_{u}} v=0,1) by N2 (X) and of the state N2 (${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0${\rm C} \ {^{3}{ \rm \Pi }_{u}} \ v^{\prime}=0) by O2 (X) are studied. Time-resolved light emission from the gas was analyzed in the temperature range from 300 K to 210 K keeping the gas at constant density. In case of quenching by N2 (X), the quenching rate constant for the vibrational level v= 0 increases by (13 ±3)% with gas cooling whereas the quenching rate constant for v= 1 decreases by (5.0 ±2.5)% in this temperature range. For quenching by O2 (X), the quenching rate constant decreases by (3 ±2)% with gas cooling. The temperature variation of the N2 (C 3Πu v=0) emission intensity for pure nitrogen and dry air are calculated using the obtained quenching rate constants and is compared with the experimental data available in the literature.  相似文献   

5.
Ultrafast delocalization of hydrogen atoms in allene (CH2=C=CH2) induced by intense laser fields was investigated by the Coulomb explosion coincidence momentum imaging method. On the basis of the kinetic energy distributions of the fragment ions produced through the two three-body Coulomb explosion pathways, C3H43+ ? H+ + CH+ + C2H2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{CH}^{+} + \mathrm{C}_{2}\mathrm{H}_{2}^{+} and C3H43+ ? H+ + C2H+ +CH2+\mathrm{C}_{3}\mathrm{H}_{4}^{3+} \rightarrow \mathrm{H}^{+} + \mathrm{C}_{2}\mathrm{H}^{+} +\mathrm{CH}_{2}^{+}, and the proton maps for both pathways, it was shown that the decomposition proceeds in a stepwise manner as well as in a concerted manner. The time scale of the hydrogen migration within an allene molecule was estimated to be ∼20 fs.  相似文献   

6.
In this article, we study the Λ c and Λ b baryons in the nuclear matter using the QCD sum rules, and obtain the in-medium masses M\varLambda c*=2.335 GeVM_{\varLambda _{c}}^{*}=2.335~\mathrm{GeV}, M\varLambda b*=5.678 GeVM_{\varLambda _{b}}^{*}=5.678~\mathrm{GeV}, the in-medium vector self-energies \varSigma \varLambda cv=34 MeV\varSigma ^{\varLambda _{c}}_{v}=34~\mathrm{MeV}, \varSigma \varLambda bv=32 MeV\varSigma ^{\varLambda _{b}}_{v}=32~\mathrm {MeV}, and the in-medium pole residues l\varLambda c*=0.021 GeV3\lambda_{\varLambda _{c}}^{*}=0.021~\mathrm{GeV}^{3}, l\varLambda b*=0.026 GeV3\lambda_{\varLambda _{b}}^{*}=0.026~\mathrm{GeV}^{3}. The mass-shifts are M\varLambda c*-M\varLambda c=51 MeVM_{\varLambda _{c}}^{*}-M_{\varLambda _{c}}=51~\mathrm{MeV} and M\varLambda b*-M\varLambda b=60 MeVM_{\varLambda _{b}}^{*}-M_{\varLambda _{b}}=60~\mathrm{MeV}, respectively.  相似文献   

7.
We present detailed experimental spectra and accurate theoretical interpretation of resonance-enhanced two-photon ionization of ultracold rubidium molecules in the 14000–17000 cm-1 transition energy range. The dimers are formed in a magneto-optical trap by photoassociation followed by radiative decay into the a 3Σu+ lowest triplet state. The theoretical treatment of the process, which reproduces the main features of the spectra, takes into account the photoassociation and decay steps as well as the resonant ionization through the manifold of intermediate gerade states correlated to the 5S + 4D limit. In particular, the energy of the v=1 level of the potential well has been determined for the first time. In addition, a tight constraint has been put on the position of the a 3Σu+ repulsive wall. Finally, magnetic trapping of rubidium molecules in the a 3Σu+ state is demonstrated. Electronic supplementary material Online Material  相似文献   

8.
Multi-mode absorption spectroscopy, MUMAS, has been combined with the techniques of wavelength modulation spectroscopy, WMS, and cavity enhanced absorption spectroscopy, CEAS, to record multiple molecular transitions using a single laser and a single detector. MUMAS signals were recorded using a multi-mode diode laser of the A-band $b^{1}\varSigma _{g}^{+}\leftarrow X^{3}\varSigma _{g}^{-}Multi-mode absorption spectroscopy, MUMAS, has been combined with the techniques of wavelength modulation spectroscopy, WMS, and cavity enhanced absorption spectroscopy, CEAS, to record multiple molecular transitions using a single laser and a single detector. MUMAS signals were recorded using a multi-mode diode laser of the A-band b1\varSigma g+? X3\varSigma g-b^{1}\varSigma _{g}^{+}\leftarrow X^{3}\varSigma _{g}^{-} of molecular oxygen at 760 nm. Direct MUMAS and WMS-MUMAS signals were recorded using a White cell for air and pure oxygen for pressures in the range 0 to 1 bar. CEAS-MUMAS signals were recorded with and without WMS in an open enhancement cavity containing laboratory air. Enhancement of the signal-to-noise ratio has been obtained demonstrating the potential for increased detection sensitivity for gas-sensing applications of MUMAS.  相似文献   

9.
The existence of co-rotational finite time blow up solutions to the wave map problem from ${\mathbb{R}^{2+1} \to N}The existence of co-rotational finite time blow up solutions to the wave map problem from \mathbbR2+1 ? N{\mathbb{R}^{2+1} \to N} , where N is a surface of revolution with metric d ρ 2 + g(ρ)2 dθ2, g an entire function, is proven. These are of the form u(t,r)=Q(l(t)t)+R(t,r){u(t,r)=Q(\lambda(t)t)+\mathcal{R}(t,r)} , where Q is a time independent solution of the co-rotational wave map equation −u tt  + u rr  + r −1 u r  = r −2 g(u)g′(u), λ(t) = t −1-ν, ν > 1/2 is arbitrary, and R{\mathcal{R}} is a term whose local energy goes to zero as t → 0.  相似文献   

10.
Neutral and cationic Zn n O m clusters of various stoichiometry have been produced by nanosecond laser ablation of ZnO in vacuum and investigated by time-of-flight mass spectrometry. Particular attention was paid to the effect of laser wavelength (in the range from near-IR to UV) on cluster composition. Under 193-nm laser ablation, the charged clusters are essentially substoichiometric with ZnnOn-1+\mathrm{Zn}_{n}\mathrm{O}_{n-1}^{+} and ZnnOn-3+\mathrm{Zn}_{n}\mathrm{O}_{n-3}^{+} being the most abundant series. Both sub- and stoichiometric cationic clusters are generated in abundance at 532- and 1064-nm ablation whose composition depends on the cluster size. The reactivity of small stoichiometric ZnnOn+\mathrm{Zn}_{n}\mathrm{O}_{n}^{+} clusters (n<11) toward hydrogen is found to be high, while oxygen-deficient species are less reactive. The neutral plume particles are mainly stoichiometric with Zn4O4 tetramer being a magic cluster. It is suggested that the Zn4O4 loss is the dominant fragmentation channel of large zinc oxide clusters upon electron impact. Plume expansion conditions under ZnO ablation with visible and IR laser pulses are shown to be favorable for stoichiometric cluster formation.  相似文献   

11.
We report STAR measurements of mid-rapidity yields for the Λ , , K S 0 , Ξ , , Ω , particles in Cu + Cu and Au + Au  GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu + Cu collisions compared to Au + Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu + Cu and Au + Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.  相似文献   

12.
Results are reported from a study of the optical properties of porous alumina films obtained by anodizing in a water solution of sulfuric acid and modified by thermal annealing in air at T ≥ 850°C. A comparative analysis of the data shows that the near-UV and visible photoluminescence of alumina anodized in a sulfuric acid solution is caused primarily by oxygen divacancies (F2, F2+ _2^{+} , and F22 + _2^{2 + } centers), while sulfate ions have little effect on the luminescence properties of anodic alumina in this spectral range.  相似文献   

13.
Laser-Induced Breakdown Spectroscopy (LIBS) of DNA bases Guanine and Adenine was studied using a high-power CO2 pulsed laser (λ=10.591 μm, τ FWHM=64 ns and fluences ranging from 25 to 70 J/cm2). The strong emission of the adenine and guanine plasma, collected using a high-resolution spectrometer, at medium-vacuum conditions (4 Pa) and at 1 mm from the target, exhibits excited molecular bands of CN (B2 Σ +–X2 Σ +) and excited neutral H and ionized N+ and C+. The medium-weak emission is due to excited species C2+, C3+, N, O, O+, O2+ and molecular band systems of $\mathrm{C}_{2}(\mathrm{d}^{3}\varPi_{\mathrm{g}}\mbox{--}\mathrm{a}^{3}\varPi_{\mathrm{u}};\ \mathrm{D}^{1}\varSigma_{\mathrm{u}}^{+}\mbox{--}\mathrm{X}^{1}\varSigma_{\mathrm{g}}^{+})$ , OH(A2 Σ +–X2 Π), NH(A3 Π–X3 Σ ?), CH(A2 Π–X2 Π), $\mathrm{N}_{2}^{+}(\mathrm{B}^{2}\varSigma_{\mathrm{u}}^{+}\mbox{--} \mathrm{X}^{2}\varSigma_{\mathrm{g}}^{+})$ and N2(C3 Π u–B3 Π g). We focus our attention on the temporal evolution of different atomic/ionic and molecular species. The velocity distributions for various (different) species were obtained from time-of-flight (TOF) measurements. Intensities of some lines from C+ were used for determining electron temperature and their Stark-broadened profiles were employed to estimate the temporal evolution of electron density.  相似文献   

14.
Single electron capture and single ionization total cross sections in collisions of proton with ethylene are calculated for an energy range 25 keV E 150 keV, using the classical trajectory Monte Carlo method. Multi-center model potentials are employed to represent the interaction of the active electron on each molecular orbital with the C2H4+_{4}^{+} core. The results are compared with experimental results for single electron capture.  相似文献   

15.
We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a “one-shot” calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na4, Na+9^{+}_{9} and Na+21^{+}_{21}, treating one active electron per Na atom.  相似文献   

16.
To asymptotic complete scattering systems {M ++V,M +} on H+:=L2(R+,K{\mathcal{H}}_{+}:=L^{2}(\mathbf{R}_{+},{\mathcal{K}}, d λ), where M + is the multiplication operator on H+{\mathcal{H}}_{+} and V is a trace class operator with analyticity conditions, a decay semigroup is associated such that the spectrum of the generator of this semigroup coincides with the set of all resonances (poles of the analytic continuation of the scattering matrix into the lower half plane across the positive half line), i.e. the decay semigroup yields a “time-dependent” characterization of the resonances. As a counterpart a “spectral characterization” is mentioned which is due to the “eigenvalue-like” properties of resonances.  相似文献   

17.
Among von Neumann algebras, the Weyl algebra W{\mathcal{W}} generated by two unitary groups {U(α)} and {V(β)}, the algebra U{\mathcal{U}} generated by a completely non-unitary semigroup of isometries {U +(α)} and the Weyl algebra W+h{\mathcal{W}_{+}^{h}} pertaining to a semi-bounded space with homogeneous spectrum of the generator of {V(β)}, all share the property that their representations are completely reducible and the irreducible representations are equivalent. We trace this fact to the identity of these algebras, in the sense that any of them contains a representation of any of the remaining two algebras, which in turn contains the original algebra. We prove this statement by explicit construction. The aforementioned results about the representations of the algebras follow immediately from the proof for any of them. Also, by the above construction we prove for Wh+{\mathcal{W}^{h}_{+}} the analog of a theorem by Sinai for W{\mathcal{W}} : given {V(β)} with semi-bounded homogeneous spectrum, there exists a completely non-unitary semigroup {U +(α)} such that {V(β)} and {U +(α)} generate W+h{\mathcal{W}_{+}^{h}}.  相似文献   

18.
The vibrational, rotational, and centrifugal distortion constants have been calculated for the electronic states A 1Σ u + , B 1Πu, C 1Πu, D 1Σ u + , and E 1Σ u + of the Cs2 molecule. The calculation was performed on the basis of the semiempirical potential energy curves constructed in this paper. The calculated spectroscopic constants are compared with the experimental data. Original Russian Text ? A.D. Smirnov, 2007, published in Optika i Spektroskopiya, 2007, Vol. 102, No. 1, pp. 23–27.  相似文献   

19.
Rate constants for electron-vibrational energy exchange Ar(3 P 2) + N2(X 1Σ g +, ν = 0) → Ar(1 S 0) + N2(C 3Π u , ν′), where ν′ = 0, 1, 2, were calculated. Calculations were performed taking into account the presence of a resonance in electron scattering by N2(X 1Σ g +). As a result, the interaction of Ar(3 P 2) with N2(X 1Σ g +, ν = 0) was characterized by attraction and, in the end, intersection of electron-vibrational potential surfaces correlating with Ar(3 P 2) + N2(X 1Σ g +, ν = 0) and Ar(1 S 0) + N2(C 3Π u , ν′) at interparticle distances of 2.5–3.5 ?. Exchange interaction at which electron-vibrational transitions in the region of intersection of electron-vibrational transitions in the region of intersection of electron-vibrational potential surfaces accompanied by spin exchange were induced was calculated by the asymptotic method. The rate constants determined at 300–600 K were on the order of 10−11−10−12 cm3/s and weakly increased as the temperature grew. Mainly the C 3Π u , ν′ = 0 state of the N2 molecule was populated. The calculation results were in satisfactory agreement with the experimental data obtained at 300 K.  相似文献   

20.
We calculate the masses and the pole residues of the heavy baryons Ω c 0(css) and Ω b (bss) with the QCD sum rules. The numerical values  GeV (or  GeV) and  GeV (or  GeV) are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号