首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 μm3) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.  相似文献   

2.
Intense para‐hydrogen‐enhanced NMR signals are observed in the hydrogenation of propene and propyne over ceria nanocubes, nano‐octahedra, and nanorods. The well‐defined ceria shapes, synthesized by a hydrothermal method, expose different crystalline facets with various oxygen vacancy densities, which are known to play a role in hydrogenation and oxidation catalysis. While the catalytic activity of the hydrogenation of propene over ceria is strongly facet‐dependent, the pairwise selectivity is low (2.4 % at 375 °C), which is consistent with stepwise H atom transfer, and it is the same for all three nanocrystal shapes. Selective semi‐hydrogenation of propyne over ceria nanocubes yields hyperpolarized propene with a similar pairwise selectivity of (2.7 % at 300 °C), indicating product formation predominantly by a non‐pairwise addition. Ceria is also shown to be an efficient pairwise replacement catalyst for propene.  相似文献   

3.
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen‐induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous‐flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch‐mode method is applied: propene is first loaded into the catalyst‐containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous‐flow homogeneous catalytic hydrogenation, and a factor of 3–10 more efficient compared to the typical results of heterogeneous continuous‐flow hydrogenations.  相似文献   

4.
The species retained by a Pd/ZrO2 catalyst after propyne hydrogenation was investigated by infra-red spectroscopy. The main species identified were a di-sigma adsorbed propene and a sigma/pi adsorbed propyne.  相似文献   

5.
We demonstrate the creation and observation of para-hydrogen-induced polarization in heterogeneous hydrogenation reactions. Wilkinson's catalyst, RhCl(PPh3)3, supported on either modified silica gel or a polymer, is shown to hydrogenate styrene into ethylbenzene and to produce enhanced spin polarizations, observed through NMR, when the reaction was performed with H2 gas enriched in the para spin isomer. Furthermore, gaseous phase para-hydrogenation of propylene to propane with two catalysts, the Wilkinson's catalyst supported on modified silica gel and Rh(cod)(sulfos) (cod = cycloocta-1,5-diene; sulfos = -O3S(C6H4)CH2C(CH2PPh2)3) supported on silica gel, demonstrates heterogeneous catalytic conversion resulting in large spin polarizations. These experiments serve as a direct verification of the mechanism of heterogeneous hydrogenation reactions involving immobilized metal complexes and can be potentially developed into a practical tool for producing catalyst-free fluids with highly polarized nuclear spins for a broad range of hyperpolarized NMR and MRI applications.  相似文献   

6.
The reaction of propene (CH(3)CH═CH(2)) with hydrogen atoms has been investigated in a heated single-pulsed shock tube at temperatures between 902 and 1200 K and pressures of 1.5-3.4 bar. Stable products from H atom addition and H abstraction have been identified and quantified by gas chromatography/flame ionization/mass spectrometry. The reaction for the H addition channel involving methyl displacement from propene has been determined relative to methyl displacement from 1,3,5-trimethylbenzene (135TMB), leading to a reaction rate, k(H + propene) → H(2)C═CH(2) + CH(3)) = 4.8 × 10(13) exp(-2081/T) cm(3)/(mol s). The rate constant for the abstraction of the allylic hydrogen atom is determined to be k(H + propene → CH(2)CH═CH(2) + H(2)) = 6.4 × 10(13) exp(-4168/T) cm(3)/(mol s). The reaction of H + propene has also been directly studied relative to the reaction of H + propyne, and the relationship is found to be log[k(H + propyne → acetylene + CH(3))/k(H + propene → ethylene + CH(3))] = (-0.461 ± 0.041)(1000/T) + (0.44 ± 0.04). The results showed that the rate constant for the methyl displacement reaction with propene is a factor of 1.05 ± 0.1 larger than that for propyne near 1000 K. The present results are compared with relevant earlier data on related compounds.  相似文献   

7.
Reactions of (14)N(+)((3)P), (15)N(+)((3)P), and Kr(+) with propane, propene, and propyne were studied using the selected ion flow tube, SIFT, technique. Thermal rate constants in all N(+)/C(3) systems were k = (2 ± 0.4) × 10(-9) cm(3) molecule(-1) s(-1), close to the collisional rate constants. With propane and propene, only hydrocarbon ions were found among the products of reactions with N(+); in propyne about 15% of the products were N-containing ions (C(3)H(2)N(+), C(2)H(4)N(+), C(2)H(3)N(+), C(2)H(2)N(+)), and the rest were hydrocarbon ions. A comparison with product ions from electron transfer between Kr(+) (of recombination energy similar to that for N(+)((3)P)) and the C(3) hydrocarbons and further analysis of the results led to an estimation of an approximate ratio of electron transfer vs hydride-ion transfer reactions leading to the hydrocarbon product ions: in propane the ratio was 2:1, in propene 3:1, and in propyne 5:1. A fraction of product ions resulted from reactions leading to the excited neutral product N*.  相似文献   

8.
A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3‐butadiene and 1‐butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3‐butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed.  相似文献   

9.
丙烷在负载型V2O5/Zr3(PO4)4催化剂上的氧化脱氢   总被引:2,自引:0,他引:2  
制备了无定型的磷酸锆Zr3(PO4)4载体,采用浸渍法在载体上负载06%~60%的V2O5.所制备的催化剂在丙烷氧化脱氢反应中具有较好的催化性能,如30%V2O5/Zr3(PO4)4催化剂在丙烷转化率为170%时,丙烯选择性可达538%,丙烯收率达91%.考察了不同反应条件下催化剂的性能.XRD、IR和Raman光谱表明,V2O5在Zr3(PO4)4载体上主要是以高度分散的钒氧物种存在;ESR分析结果证明催化剂中存在V4+物种,表明V5+/V4+参与了氧化还原反应.  相似文献   

10.
The behaviour of allylpalladium(II) complexes in THF towards molecular hydrogen under mild experimental conditions has been studied. The decomposition to palladium metal and propane is discussed in terms of the fluxionality of the allyl moiety and the stability of a proposed PdH intermediate. Reaction of allylpalladium(II) complexes with H2 and allene results in catalytic selective hydrogenation to give propene.  相似文献   

11.
高汉荣  徐筠 《分子催化》1993,7(6):432-438
报道了四种不同P/Pd摩尔比的膦化聚2,6-二甲基1,4-苯醚负载把催化剂的加氢和异构化性能;通过XPS、电镜和远红外对催化剂进行了表征;并考察了溶剂和温度对催化剂活性的影响.  相似文献   

12.
贵金属负载光催化剂在丙炔光催化水解反应中的研究(Ⅲ)   总被引:16,自引:0,他引:16  
利用三种不同负载方法制备了含有不同贵金属的TiO2光催化剂,通过测试其XPS和光催化活性和选择性发现,TiO2光催化剂在丙炔和水的光催化水解反应中,由于贵金属的存在,有利于促进发生加氢反应,导致丙烯的生成量增加.Pt,Ru,Rh,Pd和Ag负载在TiO2上,在紫外线照射下(λ>270nm),Pd负载的TiO2光催化剂表现出最高的光催化活性.光催化活性和负载贵金属所处的氧化状态有密切的关系,贵金属完全被还原到0价是提高光催化活性的必要条件.  相似文献   

13.
Mixtures of hydrocarbons (methane, allene, propyne, propene, and propane)–H2–O2 highly diluted with argon were heated to a temperature ranging from 1200 to 1900 K behind reflected shock waves, and the additive effects of methane, allene, propyne, propene, and propane on OH radical production in H2 oxidation were studied by observing time‐resolved UV‐absorption (306.7 nm). It was found that, in H2 oxidation below 1500 K, the addition of these hydrocarbons prolonged the delay time of the onset of the rapid OH radical production. An analysis using reported kinetic modeling of C1–C4 oxidation gave valuable information for reactions between hydrocarbons and H, O atoms and OH radicals. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 50–55, 2005  相似文献   

14.
铯添加对VOx/SBA-15催化剂丙烷氧化脱氢性能影响   总被引:1,自引:0,他引:1  
我们考察了碱金属铯的添加对具有单一活性中心(分立的VOx四面体)的VOx/SBA-15催化剂上丙烷氧化脱氢反应性能的影响,发现铯的加入可以显著改善丙烯的选择性.在相同的丙烷转化率时,丙烯选择性提高了约10%.对催化剂的X射线衍射,拉曼光谱,程序升温还原,吡啶吸附IR光谱和程序升温脱附表征结果表明,少量碱金属的加入,并未改变活性中心的结构及其可还原性能,但明显降低了催化剂表面酸量,尤其是B酸量,从而有利于产物丙烯的脱附,抑制了深度氧化产物COx的产生,提高了丙烯的选择性.  相似文献   

15.
催化剂表面分形结构对催化反应的影响   总被引:1,自引:0,他引:1  
用溶胶-凝胶方法制备了SiO2并以其及另一种SiO2气凝胶作载体,用浸渍法制备了两种铑基催化剂。以n-C5~C8烷烃为探针分子,测得两种催化剂的表面分形维数D分别为3和2。在两种催化剂上,CO加氢和丙烷氢解反应的选择性没有显著差别,但在D=2的催化剂上,CO加氢和丙烷氢解反应的速度显著高于D=3的催化剂  相似文献   

16.
The complex kinetic influence of surface species of catalysts is discussed for propene hydrogenation and hydroformylation over sodium supported palladium and palladium catalyst. The reaction orders in CO demonstrate the involvement of CO in propene hydrogenation. Therefore, an additional pathway for hydrogenation with formation of a complex between CO and hydrogen, which further reacts with propene, is advanced.  相似文献   

17.
负载型钒基催化剂上丙烷的临氧活化转化   总被引:1,自引:0,他引:1  
用TPSR(程序升湿表面反应)-TR(FT)IR技术,研究临氧条件下丙烷负载型钒基催化剂上的活化和转化,并与催化剂的可不原性和表面酸性相关联,丙烷氧化脱氢生成丙烯与深度氧化生成COx的起始反应温度相同;而裂解产物C2H4和CH4的生成温度比丙烷氧化脱氢生成丙烯的高得多,可能主要源于丙烷的高温气相裂解,催化剂的表面酸性位和强的可还原性,有利于丙烷中C-H键的活化和临氧转化,降低起以攻提高丙烷转化率,  相似文献   

18.
以Fe(CO)5为前体采用超声法合成纳米Fe胶体粒子,通过Fe胶体与PdCl2发生金属置换反应制备出活性炭负载Pd-Fe双金属催化剂。研究了表面活性剂聚乙烯吡咯烷酮对制备负载型催化剂的影响。采用XRD、H2程序升温还原(H2-TPR)、TEM、EDX等表征手段对催化剂进行表征,以苯乙炔加氢反应为探针反应考察了Fe含量对于催化剂催化性能的影响。结果表明加氢催化活性较差的金属组分Fe在合适的比例下可以促进Pd基催化剂的加氢催化活性和选择性,然而,过多的Fe也会降低其催化活性。  相似文献   

19.
The diphosphine 3,5-dideoxy-1,2-O-isopropylidene-3,5-bis(di(2-methoxyphenyl)phosphanyl)-alpha-D-xylofuranose (o-MeO-xylophos), which differs from the known 3,5-dideoxy-1,2-O-isopropylidene-3,5-bis(diphenylphosphanyl)-alpha-D-xylofuranose (xylophos) by the presence of 2-methoxy substituents on the P-aryl rings, has been synthesized and characterized. These two ligands have been employed to stabilize the Pd(II) complexes [PdCl2(o-MeO-xylophos)] (1a), [PdCl2(xylophos)] (2a), [PdClMe(o-MeO-xylophos)] (1b), [PdClMe(xylophos)] (2b), [Pd(OTs)(H2O)(o-MeO-xylophos)](OTs) (1c) and [Pd(OTs)(H2O)(xylophos)](OTs) (2c). All complexes have been characterized by multinuclear-NMR spectroscopy. The solid-state structure of 1a has been determined by a single crystal X-ray analysis. The Pd-aqua complexes 1c and 2c have been employed to catalyse the CO-ethene and CO-propene copolymerization as well as the CO-ethene-propene terpolymerization reaction in MeOH. The catalytic activity and the molecular weight of the polyketones have been compared to those of the products obtained with analogous catalysts, [Pd(H2O)2(o-MeO-dppp)](OTs)2 (3c) and [Pd(H2O)(OTs)(dppp)](OTs) (4c), bearing the classical 1,3-bis(diphenylphoshino)propane ligand (dppp). Under comparable catalytic conditions, all catalysts produce structurally similar polymeric materials, with 1c yielding the largest propene incorporation as well as the highest productivity of low-molecular-weight terpolymers.  相似文献   

20.
Homogeneous hydrogenations of unsaturated substrates with parahydrogen yield strong NMR signal enhancements of the transferred 1H nuclei if the symmetry of H2 is broken in the resulting hydrogenated products. This chemically induced hyperpolarization known as Parahydrogen-induced polarization (PHIP) is also transferred to other protons and heteronuclei (2H, 13C, 29Si, 31P) when the hydrogenation is initiated at low magnetic fields. Hydrogenating various fluorinated styrenes and phenylacetylenes, we show that PHIP-derived hyperpolarization is transferred to 19F not only in the Earth's magnetic field (ALTADENA condition) but also in a strong magnetic field, e.g., when carrying out the reaction in the NMR spectrometer (PASADENA condition). Upon conducting a systematic analysis of the observed PHIP transfer to 1H, 13C, and 19F in the hydrogenation products to elucidate the mechanisms that govern this parahydrogen-aided resonance transfer (PART), we conclude that high- and low-field PHIP transfer mechanisms differ in detail depending on either through-bond or through-space interactions. Substrates with high hydrogenation rates and long spin-lattice relaxation times (T1) yield the highest degree of heteronuclear hyperpolarization. Possible medical applications for hyperpolarized 19F-containing molecules as "active" contrast agents for magnetic resonance imaging (MRI) are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号